feat: Iteration node support parallel mode (#9493)
This commit is contained in:
@@ -23,6 +23,7 @@ class NodeRunMetadataKey(str, Enum):
|
||||
PARALLEL_START_NODE_ID = "parallel_start_node_id"
|
||||
PARENT_PARALLEL_ID = "parent_parallel_id"
|
||||
PARENT_PARALLEL_START_NODE_ID = "parent_parallel_start_node_id"
|
||||
PARALLEL_MODE_RUN_ID = "parallel_mode_run_id"
|
||||
|
||||
|
||||
class NodeRunResult(BaseModel):
|
||||
|
@@ -59,6 +59,7 @@ class BaseNodeEvent(GraphEngineEvent):
|
||||
|
||||
class NodeRunStartedEvent(BaseNodeEvent):
|
||||
predecessor_node_id: Optional[str] = None
|
||||
parallel_mode_run_id: Optional[str] = None
|
||||
"""predecessor node id"""
|
||||
|
||||
|
||||
@@ -81,6 +82,10 @@ class NodeRunFailedEvent(BaseNodeEvent):
|
||||
error: str = Field(..., description="error")
|
||||
|
||||
|
||||
class NodeInIterationFailedEvent(BaseNodeEvent):
|
||||
error: str = Field(..., description="error")
|
||||
|
||||
|
||||
###########################################
|
||||
# Parallel Branch Events
|
||||
###########################################
|
||||
@@ -129,6 +134,8 @@ class BaseIterationEvent(GraphEngineEvent):
|
||||
"""parent parallel id if node is in parallel"""
|
||||
parent_parallel_start_node_id: Optional[str] = None
|
||||
"""parent parallel start node id if node is in parallel"""
|
||||
parallel_mode_run_id: Optional[str] = None
|
||||
"""iteratoin run in parallel mode run id"""
|
||||
|
||||
|
||||
class IterationRunStartedEvent(BaseIterationEvent):
|
||||
|
@@ -4,6 +4,7 @@ import time
|
||||
import uuid
|
||||
from collections.abc import Generator, Mapping
|
||||
from concurrent.futures import ThreadPoolExecutor, wait
|
||||
from copy import copy, deepcopy
|
||||
from typing import Any, Optional
|
||||
|
||||
from flask import Flask, current_app
|
||||
@@ -724,6 +725,16 @@ class GraphEngine:
|
||||
"""
|
||||
return time.perf_counter() - start_at > max_execution_time
|
||||
|
||||
def create_copy(self):
|
||||
"""
|
||||
create a graph engine copy
|
||||
:return: with a new variable pool instance of graph engine
|
||||
"""
|
||||
new_instance = copy(self)
|
||||
new_instance.graph_runtime_state = copy(self.graph_runtime_state)
|
||||
new_instance.graph_runtime_state.variable_pool = deepcopy(self.graph_runtime_state.variable_pool)
|
||||
return new_instance
|
||||
|
||||
|
||||
class GraphRunFailedError(Exception):
|
||||
def __init__(self, error: str):
|
||||
|
@@ -1,3 +1,4 @@
|
||||
from enum import Enum
|
||||
from typing import Any, Optional
|
||||
|
||||
from pydantic import Field
|
||||
@@ -5,6 +6,12 @@ from pydantic import Field
|
||||
from core.workflow.nodes.base import BaseIterationNodeData, BaseIterationState, BaseNodeData
|
||||
|
||||
|
||||
class ErrorHandleMode(str, Enum):
|
||||
TERMINATED = "terminated"
|
||||
CONTINUE_ON_ERROR = "continue-on-error"
|
||||
REMOVE_ABNORMAL_OUTPUT = "remove-abnormal-output"
|
||||
|
||||
|
||||
class IterationNodeData(BaseIterationNodeData):
|
||||
"""
|
||||
Iteration Node Data.
|
||||
@@ -13,6 +20,9 @@ class IterationNodeData(BaseIterationNodeData):
|
||||
parent_loop_id: Optional[str] = None # redundant field, not used currently
|
||||
iterator_selector: list[str] # variable selector
|
||||
output_selector: list[str] # output selector
|
||||
is_parallel: bool = False # open the parallel mode or not
|
||||
parallel_nums: int = 10 # the numbers of parallel
|
||||
error_handle_mode: ErrorHandleMode = ErrorHandleMode.TERMINATED # how to handle the error
|
||||
|
||||
|
||||
class IterationStartNodeData(BaseNodeData):
|
||||
|
@@ -1,12 +1,20 @@
|
||||
import logging
|
||||
import uuid
|
||||
from collections.abc import Generator, Mapping, Sequence
|
||||
from concurrent.futures import Future, wait
|
||||
from datetime import datetime, timezone
|
||||
from typing import Any, cast
|
||||
from queue import Empty, Queue
|
||||
from typing import TYPE_CHECKING, Any, Optional, cast
|
||||
|
||||
from flask import Flask, current_app
|
||||
|
||||
from configs import dify_config
|
||||
from core.model_runtime.utils.encoders import jsonable_encoder
|
||||
from core.variables import IntegerSegment
|
||||
from core.workflow.entities.node_entities import NodeRunMetadataKey, NodeRunResult
|
||||
from core.workflow.entities.node_entities import (
|
||||
NodeRunMetadataKey,
|
||||
NodeRunResult,
|
||||
)
|
||||
from core.workflow.entities.variable_pool import VariablePool
|
||||
from core.workflow.graph_engine.entities.event import (
|
||||
BaseGraphEvent,
|
||||
BaseNodeEvent,
|
||||
@@ -17,6 +25,9 @@ from core.workflow.graph_engine.entities.event import (
|
||||
IterationRunNextEvent,
|
||||
IterationRunStartedEvent,
|
||||
IterationRunSucceededEvent,
|
||||
NodeInIterationFailedEvent,
|
||||
NodeRunFailedEvent,
|
||||
NodeRunStartedEvent,
|
||||
NodeRunStreamChunkEvent,
|
||||
NodeRunSucceededEvent,
|
||||
)
|
||||
@@ -24,9 +35,11 @@ from core.workflow.graph_engine.entities.graph import Graph
|
||||
from core.workflow.nodes.base import BaseNode
|
||||
from core.workflow.nodes.enums import NodeType
|
||||
from core.workflow.nodes.event import NodeEvent, RunCompletedEvent
|
||||
from core.workflow.nodes.iteration.entities import IterationNodeData
|
||||
from core.workflow.nodes.iteration.entities import ErrorHandleMode, IterationNodeData
|
||||
from models.workflow import WorkflowNodeExecutionStatus
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from core.workflow.graph_engine.graph_engine import GraphEngine
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
@@ -38,6 +51,17 @@ class IterationNode(BaseNode[IterationNodeData]):
|
||||
_node_data_cls = IterationNodeData
|
||||
_node_type = NodeType.ITERATION
|
||||
|
||||
@classmethod
|
||||
def get_default_config(cls, filters: Optional[dict] = None) -> dict:
|
||||
return {
|
||||
"type": "iteration",
|
||||
"config": {
|
||||
"is_parallel": False,
|
||||
"parallel_nums": 10,
|
||||
"error_handle_mode": ErrorHandleMode.TERMINATED.value,
|
||||
},
|
||||
}
|
||||
|
||||
def _run(self) -> Generator[NodeEvent | InNodeEvent, None, None]:
|
||||
"""
|
||||
Run the node.
|
||||
@@ -83,7 +107,7 @@ class IterationNode(BaseNode[IterationNodeData]):
|
||||
variable_pool.add([self.node_id, "item"], iterator_list_value[0])
|
||||
|
||||
# init graph engine
|
||||
from core.workflow.graph_engine.graph_engine import GraphEngine
|
||||
from core.workflow.graph_engine.graph_engine import GraphEngine, GraphEngineThreadPool
|
||||
|
||||
graph_engine = GraphEngine(
|
||||
tenant_id=self.tenant_id,
|
||||
@@ -123,108 +147,64 @@ class IterationNode(BaseNode[IterationNodeData]):
|
||||
index=0,
|
||||
pre_iteration_output=None,
|
||||
)
|
||||
|
||||
outputs: list[Any] = []
|
||||
try:
|
||||
for _ in range(len(iterator_list_value)):
|
||||
# run workflow
|
||||
rst = graph_engine.run()
|
||||
for event in rst:
|
||||
if isinstance(event, (BaseNodeEvent | BaseParallelBranchEvent)) and not event.in_iteration_id:
|
||||
event.in_iteration_id = self.node_id
|
||||
|
||||
if (
|
||||
isinstance(event, BaseNodeEvent)
|
||||
and event.node_type == NodeType.ITERATION_START
|
||||
and not isinstance(event, NodeRunStreamChunkEvent)
|
||||
):
|
||||
if self.node_data.is_parallel:
|
||||
futures: list[Future] = []
|
||||
q = Queue()
|
||||
thread_pool = GraphEngineThreadPool(max_workers=self.node_data.parallel_nums, max_submit_count=100)
|
||||
for index, item in enumerate(iterator_list_value):
|
||||
future: Future = thread_pool.submit(
|
||||
self._run_single_iter_parallel,
|
||||
current_app._get_current_object(),
|
||||
q,
|
||||
iterator_list_value,
|
||||
inputs,
|
||||
outputs,
|
||||
start_at,
|
||||
graph_engine,
|
||||
iteration_graph,
|
||||
index,
|
||||
item,
|
||||
)
|
||||
future.add_done_callback(thread_pool.task_done_callback)
|
||||
futures.append(future)
|
||||
succeeded_count = 0
|
||||
while True:
|
||||
try:
|
||||
event = q.get(timeout=1)
|
||||
if event is None:
|
||||
break
|
||||
if isinstance(event, IterationRunNextEvent):
|
||||
succeeded_count += 1
|
||||
if succeeded_count == len(futures):
|
||||
q.put(None)
|
||||
yield event
|
||||
if isinstance(event, RunCompletedEvent):
|
||||
q.put(None)
|
||||
for f in futures:
|
||||
if not f.done():
|
||||
f.cancel()
|
||||
yield event
|
||||
if isinstance(event, IterationRunFailedEvent):
|
||||
q.put(None)
|
||||
yield event
|
||||
except Empty:
|
||||
continue
|
||||
|
||||
if isinstance(event, NodeRunSucceededEvent):
|
||||
if event.route_node_state.node_run_result:
|
||||
metadata = event.route_node_state.node_run_result.metadata
|
||||
if not metadata:
|
||||
metadata = {}
|
||||
|
||||
if NodeRunMetadataKey.ITERATION_ID not in metadata:
|
||||
metadata[NodeRunMetadataKey.ITERATION_ID] = self.node_id
|
||||
index_variable = variable_pool.get([self.node_id, "index"])
|
||||
if not isinstance(index_variable, IntegerSegment):
|
||||
yield RunCompletedEvent(
|
||||
run_result=NodeRunResult(
|
||||
status=WorkflowNodeExecutionStatus.FAILED,
|
||||
error=f"Invalid index variable type: {type(index_variable)}",
|
||||
)
|
||||
)
|
||||
return
|
||||
metadata[NodeRunMetadataKey.ITERATION_INDEX] = index_variable.value
|
||||
event.route_node_state.node_run_result.metadata = metadata
|
||||
|
||||
yield event
|
||||
elif isinstance(event, BaseGraphEvent):
|
||||
if isinstance(event, GraphRunFailedEvent):
|
||||
# iteration run failed
|
||||
yield IterationRunFailedEvent(
|
||||
iteration_id=self.id,
|
||||
iteration_node_id=self.node_id,
|
||||
iteration_node_type=self.node_type,
|
||||
iteration_node_data=self.node_data,
|
||||
start_at=start_at,
|
||||
inputs=inputs,
|
||||
outputs={"output": jsonable_encoder(outputs)},
|
||||
steps=len(iterator_list_value),
|
||||
metadata={"total_tokens": graph_engine.graph_runtime_state.total_tokens},
|
||||
error=event.error,
|
||||
)
|
||||
|
||||
yield RunCompletedEvent(
|
||||
run_result=NodeRunResult(
|
||||
status=WorkflowNodeExecutionStatus.FAILED,
|
||||
error=event.error,
|
||||
)
|
||||
)
|
||||
return
|
||||
else:
|
||||
event = cast(InNodeEvent, event)
|
||||
yield event
|
||||
|
||||
# append to iteration output variable list
|
||||
current_iteration_output_variable = variable_pool.get(self.node_data.output_selector)
|
||||
if current_iteration_output_variable is None:
|
||||
yield RunCompletedEvent(
|
||||
run_result=NodeRunResult(
|
||||
status=WorkflowNodeExecutionStatus.FAILED,
|
||||
error=f"Iteration output variable {self.node_data.output_selector} not found",
|
||||
)
|
||||
# wait all threads
|
||||
wait(futures)
|
||||
else:
|
||||
for _ in range(len(iterator_list_value)):
|
||||
yield from self._run_single_iter(
|
||||
iterator_list_value,
|
||||
variable_pool,
|
||||
inputs,
|
||||
outputs,
|
||||
start_at,
|
||||
graph_engine,
|
||||
iteration_graph,
|
||||
)
|
||||
return
|
||||
current_iteration_output = current_iteration_output_variable.to_object()
|
||||
outputs.append(current_iteration_output)
|
||||
|
||||
# remove all nodes outputs from variable pool
|
||||
for node_id in iteration_graph.node_ids:
|
||||
variable_pool.remove([node_id])
|
||||
|
||||
# move to next iteration
|
||||
current_index_variable = variable_pool.get([self.node_id, "index"])
|
||||
if not isinstance(current_index_variable, IntegerSegment):
|
||||
raise ValueError(f"iteration {self.node_id} current index not found")
|
||||
|
||||
next_index = current_index_variable.value + 1
|
||||
variable_pool.add([self.node_id, "index"], next_index)
|
||||
|
||||
if next_index < len(iterator_list_value):
|
||||
variable_pool.add([self.node_id, "item"], iterator_list_value[next_index])
|
||||
|
||||
yield IterationRunNextEvent(
|
||||
iteration_id=self.id,
|
||||
iteration_node_id=self.node_id,
|
||||
iteration_node_type=self.node_type,
|
||||
iteration_node_data=self.node_data,
|
||||
index=next_index,
|
||||
pre_iteration_output=jsonable_encoder(current_iteration_output),
|
||||
)
|
||||
|
||||
yield IterationRunSucceededEvent(
|
||||
iteration_id=self.id,
|
||||
iteration_node_id=self.node_id,
|
||||
@@ -330,3 +310,231 @@ class IterationNode(BaseNode[IterationNodeData]):
|
||||
}
|
||||
|
||||
return variable_mapping
|
||||
|
||||
def _handle_event_metadata(
|
||||
self, event: BaseNodeEvent, iter_run_index: str, parallel_mode_run_id: str
|
||||
) -> NodeRunStartedEvent | BaseNodeEvent:
|
||||
"""
|
||||
add iteration metadata to event.
|
||||
"""
|
||||
if not isinstance(event, BaseNodeEvent):
|
||||
return event
|
||||
if self.node_data.is_parallel and isinstance(event, NodeRunStartedEvent):
|
||||
event.parallel_mode_run_id = parallel_mode_run_id
|
||||
return event
|
||||
if event.route_node_state.node_run_result:
|
||||
metadata = event.route_node_state.node_run_result.metadata
|
||||
if not metadata:
|
||||
metadata = {}
|
||||
|
||||
if NodeRunMetadataKey.ITERATION_ID not in metadata:
|
||||
metadata[NodeRunMetadataKey.ITERATION_ID] = self.node_id
|
||||
if self.node_data.is_parallel:
|
||||
metadata[NodeRunMetadataKey.PARALLEL_MODE_RUN_ID] = parallel_mode_run_id
|
||||
else:
|
||||
metadata[NodeRunMetadataKey.ITERATION_INDEX] = iter_run_index
|
||||
event.route_node_state.node_run_result.metadata = metadata
|
||||
return event
|
||||
|
||||
def _run_single_iter(
|
||||
self,
|
||||
iterator_list_value: list[str],
|
||||
variable_pool: VariablePool,
|
||||
inputs: dict[str, list],
|
||||
outputs: list,
|
||||
start_at: datetime,
|
||||
graph_engine: "GraphEngine",
|
||||
iteration_graph: Graph,
|
||||
parallel_mode_run_id: Optional[str] = None,
|
||||
) -> Generator[NodeEvent | InNodeEvent, None, None]:
|
||||
"""
|
||||
run single iteration
|
||||
"""
|
||||
try:
|
||||
rst = graph_engine.run()
|
||||
# get current iteration index
|
||||
current_index = variable_pool.get([self.node_id, "index"]).value
|
||||
next_index = int(current_index) + 1
|
||||
|
||||
if current_index is None:
|
||||
raise ValueError(f"iteration {self.node_id} current index not found")
|
||||
for event in rst:
|
||||
if isinstance(event, (BaseNodeEvent | BaseParallelBranchEvent)) and not event.in_iteration_id:
|
||||
event.in_iteration_id = self.node_id
|
||||
|
||||
if (
|
||||
isinstance(event, BaseNodeEvent)
|
||||
and event.node_type == NodeType.ITERATION_START
|
||||
and not isinstance(event, NodeRunStreamChunkEvent)
|
||||
):
|
||||
continue
|
||||
|
||||
if isinstance(event, NodeRunSucceededEvent):
|
||||
yield self._handle_event_metadata(event, current_index, parallel_mode_run_id)
|
||||
elif isinstance(event, BaseGraphEvent):
|
||||
if isinstance(event, GraphRunFailedEvent):
|
||||
# iteration run failed
|
||||
if self.node_data.is_parallel:
|
||||
yield IterationRunFailedEvent(
|
||||
iteration_id=self.id,
|
||||
iteration_node_id=self.node_id,
|
||||
iteration_node_type=self.node_type,
|
||||
iteration_node_data=self.node_data,
|
||||
parallel_mode_run_id=parallel_mode_run_id,
|
||||
start_at=start_at,
|
||||
inputs=inputs,
|
||||
outputs={"output": jsonable_encoder(outputs)},
|
||||
steps=len(iterator_list_value),
|
||||
metadata={"total_tokens": graph_engine.graph_runtime_state.total_tokens},
|
||||
error=event.error,
|
||||
)
|
||||
else:
|
||||
yield IterationRunFailedEvent(
|
||||
iteration_id=self.id,
|
||||
iteration_node_id=self.node_id,
|
||||
iteration_node_type=self.node_type,
|
||||
iteration_node_data=self.node_data,
|
||||
start_at=start_at,
|
||||
inputs=inputs,
|
||||
outputs={"output": jsonable_encoder(outputs)},
|
||||
steps=len(iterator_list_value),
|
||||
metadata={"total_tokens": graph_engine.graph_runtime_state.total_tokens},
|
||||
error=event.error,
|
||||
)
|
||||
yield RunCompletedEvent(
|
||||
run_result=NodeRunResult(
|
||||
status=WorkflowNodeExecutionStatus.FAILED,
|
||||
error=event.error,
|
||||
)
|
||||
)
|
||||
return
|
||||
else:
|
||||
event = cast(InNodeEvent, event)
|
||||
metadata_event = self._handle_event_metadata(event, current_index, parallel_mode_run_id)
|
||||
if isinstance(event, NodeRunFailedEvent):
|
||||
if self.node_data.error_handle_mode == ErrorHandleMode.CONTINUE_ON_ERROR:
|
||||
yield NodeInIterationFailedEvent(
|
||||
**metadata_event.model_dump(),
|
||||
)
|
||||
outputs.insert(current_index, None)
|
||||
variable_pool.add([self.node_id, "index"], next_index)
|
||||
if next_index < len(iterator_list_value):
|
||||
variable_pool.add([self.node_id, "item"], iterator_list_value[next_index])
|
||||
yield IterationRunNextEvent(
|
||||
iteration_id=self.id,
|
||||
iteration_node_id=self.node_id,
|
||||
iteration_node_type=self.node_type,
|
||||
iteration_node_data=self.node_data,
|
||||
index=next_index,
|
||||
parallel_mode_run_id=parallel_mode_run_id,
|
||||
pre_iteration_output=None,
|
||||
)
|
||||
return
|
||||
elif self.node_data.error_handle_mode == ErrorHandleMode.REMOVE_ABNORMAL_OUTPUT:
|
||||
yield NodeInIterationFailedEvent(
|
||||
**metadata_event.model_dump(),
|
||||
)
|
||||
variable_pool.add([self.node_id, "index"], next_index)
|
||||
|
||||
if next_index < len(iterator_list_value):
|
||||
variable_pool.add([self.node_id, "item"], iterator_list_value[next_index])
|
||||
yield IterationRunNextEvent(
|
||||
iteration_id=self.id,
|
||||
iteration_node_id=self.node_id,
|
||||
iteration_node_type=self.node_type,
|
||||
iteration_node_data=self.node_data,
|
||||
index=next_index,
|
||||
parallel_mode_run_id=parallel_mode_run_id,
|
||||
pre_iteration_output=None,
|
||||
)
|
||||
return
|
||||
elif self.node_data.error_handle_mode == ErrorHandleMode.TERMINATED:
|
||||
yield IterationRunFailedEvent(
|
||||
iteration_id=self.id,
|
||||
iteration_node_id=self.node_id,
|
||||
iteration_node_type=self.node_type,
|
||||
iteration_node_data=self.node_data,
|
||||
start_at=start_at,
|
||||
inputs=inputs,
|
||||
outputs={"output": None},
|
||||
steps=len(iterator_list_value),
|
||||
metadata={"total_tokens": graph_engine.graph_runtime_state.total_tokens},
|
||||
error=event.error,
|
||||
)
|
||||
yield metadata_event
|
||||
|
||||
current_iteration_output = variable_pool.get(self.node_data.output_selector).value
|
||||
outputs.insert(current_index, current_iteration_output)
|
||||
# remove all nodes outputs from variable pool
|
||||
for node_id in iteration_graph.node_ids:
|
||||
variable_pool.remove([node_id])
|
||||
|
||||
# move to next iteration
|
||||
variable_pool.add([self.node_id, "index"], next_index)
|
||||
|
||||
if next_index < len(iterator_list_value):
|
||||
variable_pool.add([self.node_id, "item"], iterator_list_value[next_index])
|
||||
yield IterationRunNextEvent(
|
||||
iteration_id=self.id,
|
||||
iteration_node_id=self.node_id,
|
||||
iteration_node_type=self.node_type,
|
||||
iteration_node_data=self.node_data,
|
||||
index=next_index,
|
||||
parallel_mode_run_id=parallel_mode_run_id,
|
||||
pre_iteration_output=jsonable_encoder(current_iteration_output) if current_iteration_output else None,
|
||||
)
|
||||
|
||||
except Exception as e:
|
||||
logger.exception(f"Iteration run failed:{str(e)}")
|
||||
yield IterationRunFailedEvent(
|
||||
iteration_id=self.id,
|
||||
iteration_node_id=self.node_id,
|
||||
iteration_node_type=self.node_type,
|
||||
iteration_node_data=self.node_data,
|
||||
start_at=start_at,
|
||||
inputs=inputs,
|
||||
outputs={"output": None},
|
||||
steps=len(iterator_list_value),
|
||||
metadata={"total_tokens": graph_engine.graph_runtime_state.total_tokens},
|
||||
error=str(e),
|
||||
)
|
||||
yield RunCompletedEvent(
|
||||
run_result=NodeRunResult(
|
||||
status=WorkflowNodeExecutionStatus.FAILED,
|
||||
error=str(e),
|
||||
)
|
||||
)
|
||||
|
||||
def _run_single_iter_parallel(
|
||||
self,
|
||||
flask_app: Flask,
|
||||
q: Queue,
|
||||
iterator_list_value: list[str],
|
||||
inputs: dict[str, list],
|
||||
outputs: list,
|
||||
start_at: datetime,
|
||||
graph_engine: "GraphEngine",
|
||||
iteration_graph: Graph,
|
||||
index: int,
|
||||
item: Any,
|
||||
) -> Generator[NodeEvent | InNodeEvent, None, None]:
|
||||
"""
|
||||
run single iteration in parallel mode
|
||||
"""
|
||||
with flask_app.app_context():
|
||||
parallel_mode_run_id = uuid.uuid4().hex
|
||||
graph_engine_copy = graph_engine.create_copy()
|
||||
variable_pool_copy = graph_engine_copy.graph_runtime_state.variable_pool
|
||||
variable_pool_copy.add([self.node_id, "index"], index)
|
||||
variable_pool_copy.add([self.node_id, "item"], item)
|
||||
for event in self._run_single_iter(
|
||||
iterator_list_value=iterator_list_value,
|
||||
variable_pool=variable_pool_copy,
|
||||
inputs=inputs,
|
||||
outputs=outputs,
|
||||
start_at=start_at,
|
||||
graph_engine=graph_engine_copy,
|
||||
iteration_graph=iteration_graph,
|
||||
parallel_mode_run_id=parallel_mode_run_id,
|
||||
):
|
||||
q.put(event)
|
||||
|
Reference in New Issue
Block a user