feat: support opensearch approximate k-NN (#5322)
This commit is contained in:
0
api/core/rag/datasource/vdb/opensearch/__init__.py
Normal file
0
api/core/rag/datasource/vdb/opensearch/__init__.py
Normal file
278
api/core/rag/datasource/vdb/opensearch/opensearch_vector.py
Normal file
278
api/core/rag/datasource/vdb/opensearch/opensearch_vector.py
Normal file
@@ -0,0 +1,278 @@
|
||||
import json
|
||||
import logging
|
||||
import ssl
|
||||
from typing import Any, Optional
|
||||
from uuid import uuid4
|
||||
|
||||
from flask import current_app
|
||||
from opensearchpy import OpenSearch, helpers
|
||||
from opensearchpy.helpers import BulkIndexError
|
||||
from pydantic import BaseModel, model_validator
|
||||
|
||||
from core.rag.datasource.entity.embedding import Embeddings
|
||||
from core.rag.datasource.vdb.field import Field
|
||||
from core.rag.datasource.vdb.vector_base import BaseVector
|
||||
from core.rag.datasource.vdb.vector_factory import AbstractVectorFactory
|
||||
from core.rag.datasource.vdb.vector_type import VectorType
|
||||
from core.rag.models.document import Document
|
||||
from extensions.ext_redis import redis_client
|
||||
from models.dataset import Dataset
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class OpenSearchConfig(BaseModel):
|
||||
host: str
|
||||
port: int
|
||||
user: Optional[str] = None
|
||||
password: Optional[str] = None
|
||||
secure: bool = False
|
||||
|
||||
@model_validator(mode='before')
|
||||
def validate_config(cls, values: dict) -> dict:
|
||||
if not values.get('host'):
|
||||
raise ValueError("config OPENSEARCH_HOST is required")
|
||||
if not values.get('port'):
|
||||
raise ValueError("config OPENSEARCH_PORT is required")
|
||||
return values
|
||||
|
||||
def create_ssl_context(self) -> ssl.SSLContext:
|
||||
ssl_context = ssl.create_default_context()
|
||||
ssl_context.check_hostname = False
|
||||
ssl_context.verify_mode = ssl.CERT_NONE # Disable Certificate Validation
|
||||
return ssl_context
|
||||
|
||||
def to_opensearch_params(self) -> dict[str, Any]:
|
||||
params = {
|
||||
'hosts': [{'host': self.host, 'port': self.port}],
|
||||
'use_ssl': self.secure,
|
||||
'verify_certs': self.secure,
|
||||
}
|
||||
if self.user and self.password:
|
||||
params['http_auth'] = (self.user, self.password)
|
||||
if self.secure:
|
||||
params['ssl_context'] = self.create_ssl_context()
|
||||
return params
|
||||
|
||||
|
||||
class OpenSearchVector(BaseVector):
|
||||
|
||||
def __init__(self, collection_name: str, config: OpenSearchConfig):
|
||||
super().__init__(collection_name)
|
||||
self._client_config = config
|
||||
self._client = OpenSearch(**config.to_opensearch_params())
|
||||
|
||||
def get_type(self) -> str:
|
||||
return VectorType.OPENSEARCH
|
||||
|
||||
def create(self, texts: list[Document], embeddings: list[list[float]], **kwargs):
|
||||
metadatas = [d.metadata for d in texts]
|
||||
self.create_collection(embeddings, metadatas)
|
||||
self.add_texts(texts, embeddings)
|
||||
|
||||
def add_texts(self, documents: list[Document], embeddings: list[list[float]], **kwargs):
|
||||
actions = []
|
||||
for i in range(len(documents)):
|
||||
action = {
|
||||
"_op_type": "index",
|
||||
"_index": self._collection_name.lower(),
|
||||
"_id": uuid4().hex,
|
||||
"_source": {
|
||||
Field.CONTENT_KEY.value: documents[i].page_content,
|
||||
Field.VECTOR.value: embeddings[i], # Make sure you pass an array here
|
||||
Field.METADATA_KEY.value: documents[i].metadata,
|
||||
}
|
||||
}
|
||||
actions.append(action)
|
||||
|
||||
helpers.bulk(self._client, actions)
|
||||
|
||||
def delete_by_document_id(self, document_id: str):
|
||||
ids = self.get_ids_by_metadata_field('document_id', document_id)
|
||||
if ids:
|
||||
self.delete_by_ids(ids)
|
||||
|
||||
def get_ids_by_metadata_field(self, key: str, value: str):
|
||||
query = {"query": {"term": {f"{Field.METADATA_KEY.value}.{key}": value}}}
|
||||
response = self._client.search(index=self._collection_name.lower(), body=query)
|
||||
if response['hits']['hits']:
|
||||
return [hit['_id'] for hit in response['hits']['hits']]
|
||||
else:
|
||||
return None
|
||||
|
||||
def delete_by_metadata_field(self, key: str, value: str):
|
||||
ids = self.get_ids_by_metadata_field(key, value)
|
||||
if ids:
|
||||
self.delete_by_ids(ids)
|
||||
|
||||
def delete_by_ids(self, ids: list[str]) -> None:
|
||||
index_name = self._collection_name.lower()
|
||||
if not self._client.indices.exists(index=index_name):
|
||||
logger.warning(f"Index {index_name} does not exist")
|
||||
return
|
||||
|
||||
# Obtaining All Actual Documents_ID
|
||||
actual_ids = []
|
||||
|
||||
for doc_id in ids:
|
||||
es_ids = self.get_ids_by_metadata_field('doc_id', doc_id)
|
||||
if es_ids:
|
||||
actual_ids.extend(es_ids)
|
||||
else:
|
||||
logger.warning(f"Document with metadata doc_id {doc_id} not found for deletion")
|
||||
|
||||
if actual_ids:
|
||||
actions = [{"_op_type": "delete", "_index": index_name, "_id": es_id} for es_id in actual_ids]
|
||||
try:
|
||||
helpers.bulk(self._client, actions)
|
||||
except BulkIndexError as e:
|
||||
for error in e.errors:
|
||||
delete_error = error.get('delete', {})
|
||||
status = delete_error.get('status')
|
||||
doc_id = delete_error.get('_id')
|
||||
|
||||
if status == 404:
|
||||
logger.warning(f"Document not found for deletion: {doc_id}")
|
||||
else:
|
||||
logger.error(f"Error deleting document: {error}")
|
||||
|
||||
def delete(self) -> None:
|
||||
self._client.indices.delete(index=self._collection_name.lower())
|
||||
|
||||
def text_exists(self, id: str) -> bool:
|
||||
try:
|
||||
self._client.get(index=self._collection_name.lower(), id=id)
|
||||
return True
|
||||
except:
|
||||
return False
|
||||
|
||||
def search_by_vector(self, query_vector: list[float], **kwargs: Any) -> list[Document]:
|
||||
# Make sure query_vector is a list
|
||||
if not isinstance(query_vector, list):
|
||||
raise ValueError("query_vector should be a list of floats")
|
||||
|
||||
# Check whether query_vector is a floating-point number list
|
||||
if not all(isinstance(x, float) for x in query_vector):
|
||||
raise ValueError("All elements in query_vector should be floats")
|
||||
|
||||
query = {
|
||||
"size": kwargs.get('top_k', 4),
|
||||
"query": {
|
||||
"knn": {
|
||||
Field.VECTOR.value: {
|
||||
Field.VECTOR.value: query_vector,
|
||||
"k": kwargs.get('top_k', 4)
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
try:
|
||||
response = self._client.search(index=self._collection_name.lower(), body=query)
|
||||
except Exception as e:
|
||||
logger.error(f"Error executing search: {e}")
|
||||
raise
|
||||
|
||||
docs = []
|
||||
for hit in response['hits']['hits']:
|
||||
metadata = hit['_source'].get(Field.METADATA_KEY.value, {})
|
||||
|
||||
# Make sure metadata is a dictionary
|
||||
if metadata is None:
|
||||
metadata = {}
|
||||
|
||||
metadata['score'] = hit['_score']
|
||||
score_threshold = kwargs.get('score_threshold') if kwargs.get('score_threshold') else 0.0
|
||||
if hit['_score'] > score_threshold:
|
||||
doc = Document(page_content=hit['_source'].get(Field.CONTENT_KEY.value), metadata=metadata)
|
||||
docs.append(doc)
|
||||
|
||||
return docs
|
||||
|
||||
def search_by_full_text(self, query: str, **kwargs: Any) -> list[Document]:
|
||||
full_text_query = {"query": {"match": {Field.CONTENT_KEY.value: query}}}
|
||||
|
||||
response = self._client.search(index=self._collection_name.lower(), body=full_text_query)
|
||||
|
||||
docs = []
|
||||
for hit in response['hits']['hits']:
|
||||
metadata = hit['_source'].get(Field.METADATA_KEY.value)
|
||||
doc = Document(page_content=hit['_source'].get(Field.CONTENT_KEY.value), metadata=metadata)
|
||||
docs.append(doc)
|
||||
|
||||
return docs
|
||||
|
||||
def create_collection(
|
||||
self, embeddings: list, metadatas: Optional[list[dict]] = None, index_params: Optional[dict] = None
|
||||
):
|
||||
lock_name = f'vector_indexing_lock_{self._collection_name.lower()}'
|
||||
with redis_client.lock(lock_name, timeout=20):
|
||||
collection_exist_cache_key = f'vector_indexing_{self._collection_name.lower()}'
|
||||
if redis_client.get(collection_exist_cache_key):
|
||||
logger.info(f"Collection {self._collection_name.lower()} already exists.")
|
||||
return
|
||||
|
||||
if not self._client.indices.exists(index=self._collection_name.lower()):
|
||||
index_body = {
|
||||
"settings": {
|
||||
"index": {
|
||||
"knn": True
|
||||
}
|
||||
},
|
||||
"mappings": {
|
||||
"properties": {
|
||||
Field.CONTENT_KEY.value: {"type": "text"},
|
||||
Field.VECTOR.value: {
|
||||
"type": "knn_vector",
|
||||
"dimension": len(embeddings[0]), # Make sure the dimension is correct here
|
||||
"method": {
|
||||
"name": "hnsw",
|
||||
"space_type": "l2",
|
||||
"engine": "faiss",
|
||||
"parameters": {
|
||||
"ef_construction": 64,
|
||||
"m": 8
|
||||
}
|
||||
}
|
||||
},
|
||||
Field.METADATA_KEY.value: {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"doc_id": {"type": "keyword"} # Map doc_id to keyword type
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
self._client.indices.create(index=self._collection_name.lower(), body=index_body)
|
||||
|
||||
redis_client.set(collection_exist_cache_key, 1, ex=3600)
|
||||
|
||||
|
||||
class OpenSearchVectorFactory(AbstractVectorFactory):
|
||||
|
||||
def init_vector(self, dataset: Dataset, attributes: list, embeddings: Embeddings) -> OpenSearchVector:
|
||||
if dataset.index_struct_dict:
|
||||
class_prefix: str = dataset.index_struct_dict['vector_store']['class_prefix']
|
||||
collection_name = class_prefix.lower()
|
||||
else:
|
||||
dataset_id = dataset.id
|
||||
collection_name = Dataset.gen_collection_name_by_id(dataset_id).lower()
|
||||
dataset.index_struct = json.dumps(
|
||||
self.gen_index_struct_dict(VectorType.OPENSEARCH, collection_name))
|
||||
|
||||
config = current_app.config
|
||||
|
||||
open_search_config = OpenSearchConfig(
|
||||
host=config.get('OPENSEARCH_HOST'),
|
||||
port=config.get('OPENSEARCH_PORT'),
|
||||
user=config.get('OPENSEARCH_USER'),
|
||||
password=config.get('OPENSEARCH_PASSWORD'),
|
||||
secure=config.get('OPENSEARCH_SECURE'),
|
||||
)
|
||||
|
||||
return OpenSearchVector(
|
||||
collection_name=collection_name,
|
||||
config=open_search_config
|
||||
)
|
@@ -78,6 +78,9 @@ class Vector:
|
||||
case VectorType.TENCENT:
|
||||
from core.rag.datasource.vdb.tencent.tencent_vector import TencentVectorFactory
|
||||
return TencentVectorFactory
|
||||
case VectorType.OPENSEARCH:
|
||||
from core.rag.datasource.vdb.opensearch.opensearch_vector import OpenSearchVectorFactory
|
||||
return OpenSearchVectorFactory
|
||||
case _:
|
||||
raise ValueError(f"Vector store {vector_type} is not supported.")
|
||||
|
||||
|
@@ -10,4 +10,5 @@ class VectorType(str, Enum):
|
||||
RELYT = 'relyt'
|
||||
TIDB_VECTOR = 'tidb_vector'
|
||||
WEAVIATE = 'weaviate'
|
||||
OPENSEARCH = 'opensearch'
|
||||
TENCENT = 'tencent'
|
||||
|
Reference in New Issue
Block a user