feat: backend model load balancing support (#4927)

This commit is contained in:
takatost
2024-06-05 00:13:04 +08:00
committed by GitHub
parent 52ec152dd3
commit d1dbbc1e33
47 changed files with 2191 additions and 256 deletions

View File

@@ -286,11 +286,7 @@ class IndexingRunner:
if len(preview_texts) < 5:
preview_texts.append(document.page_content)
if indexing_technique == 'high_quality' or embedding_model_instance:
embedding_model_type_instance = embedding_model_instance.model_type_instance
embedding_model_type_instance = cast(TextEmbeddingModel, embedding_model_type_instance)
tokens += embedding_model_type_instance.get_num_tokens(
model=embedding_model_instance.model,
credentials=embedding_model_instance.credentials,
tokens += embedding_model_instance.get_text_embedding_num_tokens(
texts=[self.filter_string(document.page_content)]
)
@@ -658,10 +654,6 @@ class IndexingRunner:
tokens = 0
chunk_size = 10
embedding_model_type_instance = None
if embedding_model_instance:
embedding_model_type_instance = embedding_model_instance.model_type_instance
embedding_model_type_instance = cast(TextEmbeddingModel, embedding_model_type_instance)
# create keyword index
create_keyword_thread = threading.Thread(target=self._process_keyword_index,
args=(current_app._get_current_object(),
@@ -674,8 +666,7 @@ class IndexingRunner:
chunk_documents = documents[i:i + chunk_size]
futures.append(executor.submit(self._process_chunk, current_app._get_current_object(), index_processor,
chunk_documents, dataset,
dataset_document, embedding_model_instance,
embedding_model_type_instance))
dataset_document, embedding_model_instance))
for future in futures:
tokens += future.result()
@@ -716,7 +707,7 @@ class IndexingRunner:
db.session.commit()
def _process_chunk(self, flask_app, index_processor, chunk_documents, dataset, dataset_document,
embedding_model_instance, embedding_model_type_instance):
embedding_model_instance):
with flask_app.app_context():
# check document is paused
self._check_document_paused_status(dataset_document.id)
@@ -724,9 +715,7 @@ class IndexingRunner:
tokens = 0
if dataset.indexing_technique == 'high_quality' or embedding_model_type_instance:
tokens += sum(
embedding_model_type_instance.get_num_tokens(
embedding_model_instance.model,
embedding_model_instance.credentials,
embedding_model_instance.get_text_embedding_num_tokens(
[document.page_content]
)
for document in chunk_documents