feat: backend model load balancing support (#4927)
This commit is contained in:
@@ -2,7 +2,6 @@ import datetime
|
||||
import logging
|
||||
import time
|
||||
import uuid
|
||||
from typing import cast
|
||||
|
||||
import click
|
||||
from celery import shared_task
|
||||
@@ -11,7 +10,6 @@ from sqlalchemy import func
|
||||
from core.indexing_runner import IndexingRunner
|
||||
from core.model_manager import ModelManager
|
||||
from core.model_runtime.entities.model_entities import ModelType
|
||||
from core.model_runtime.model_providers.__base.text_embedding_model import TextEmbeddingModel
|
||||
from extensions.ext_database import db
|
||||
from extensions.ext_redis import redis_client
|
||||
from libs import helper
|
||||
@@ -59,16 +57,12 @@ def batch_create_segment_to_index_task(job_id: str, content: list, dataset_id: s
|
||||
model=dataset.embedding_model
|
||||
)
|
||||
|
||||
model_type_instance = embedding_model.model_type_instance
|
||||
model_type_instance = cast(TextEmbeddingModel, model_type_instance)
|
||||
for segment in content:
|
||||
content = segment['content']
|
||||
doc_id = str(uuid.uuid4())
|
||||
segment_hash = helper.generate_text_hash(content)
|
||||
# calc embedding use tokens
|
||||
tokens = model_type_instance.get_num_tokens(
|
||||
model=embedding_model.model,
|
||||
credentials=embedding_model.credentials,
|
||||
tokens = embedding_model.get_text_embedding_num_tokens(
|
||||
texts=[content]
|
||||
) if embedding_model else 0
|
||||
max_position = db.session.query(func.max(DocumentSegment.position)).filter(
|
||||
|
Reference in New Issue
Block a user