fix: drop dead code phase2 unused class (#22042)
Signed-off-by: yihong0618 <zouzou0208@gmail.com>
This commit is contained in:
@@ -25,12 +25,6 @@ class UnsupportedFileTypeError(BaseHTTPException):
|
||||
code = 415
|
||||
|
||||
|
||||
class HighQualityDatasetOnlyError(BaseHTTPException):
|
||||
error_code = "high_quality_dataset_only"
|
||||
description = "Current operation only supports 'high-quality' datasets."
|
||||
code = 400
|
||||
|
||||
|
||||
class DatasetNotInitializedError(BaseHTTPException):
|
||||
error_code = "dataset_not_initialized"
|
||||
description = "The dataset is still being initialized or indexing. Please wait a moment."
|
||||
|
@@ -13,12 +13,6 @@ class CurrentPasswordIncorrectError(BaseHTTPException):
|
||||
code = 400
|
||||
|
||||
|
||||
class ProviderRequestFailedError(BaseHTTPException):
|
||||
error_code = "provider_request_failed"
|
||||
description = None
|
||||
code = 400
|
||||
|
||||
|
||||
class InvalidInvitationCodeError(BaseHTTPException):
|
||||
error_code = "invalid_invitation_code"
|
||||
description = "Invalid invitation code."
|
||||
|
@@ -25,12 +25,6 @@ class UnsupportedFileTypeError(BaseHTTPException):
|
||||
code = 415
|
||||
|
||||
|
||||
class HighQualityDatasetOnlyError(BaseHTTPException):
|
||||
error_code = "high_quality_dataset_only"
|
||||
description = "Current operation only supports 'high-quality' datasets."
|
||||
code = 400
|
||||
|
||||
|
||||
class DatasetNotInitializedError(BaseHTTPException):
|
||||
error_code = "dataset_not_initialized"
|
||||
description = "The dataset is still being initialized or indexing. Please wait a moment."
|
||||
|
@@ -10,8 +10,3 @@ class RecordNotFoundError(TaskPipilineError):
|
||||
class WorkflowRunNotFoundError(RecordNotFoundError):
|
||||
def __init__(self, workflow_run_id: str):
|
||||
super().__init__("WorkflowRun", workflow_run_id)
|
||||
|
||||
|
||||
class WorkflowNodeExecutionNotFoundError(RecordNotFoundError):
|
||||
def __init__(self, workflow_node_execution_id: str):
|
||||
super().__init__("WorkflowNodeExecution", workflow_node_execution_id)
|
||||
|
@@ -7,13 +7,6 @@ if TYPE_CHECKING:
|
||||
_tool_file_manager_factory: Callable[[], "ToolFileManager"] | None = None
|
||||
|
||||
|
||||
class ToolFileParser:
|
||||
@staticmethod
|
||||
def get_tool_file_manager() -> "ToolFileManager":
|
||||
assert _tool_file_manager_factory is not None
|
||||
return _tool_file_manager_factory()
|
||||
|
||||
|
||||
def set_tool_file_manager_factory(factory: Callable[[], "ToolFileManager"]) -> None:
|
||||
global _tool_file_manager_factory
|
||||
_tool_file_manager_factory = factory
|
||||
|
@@ -1,52 +0,0 @@
|
||||
import base64
|
||||
import hashlib
|
||||
import hmac
|
||||
import os
|
||||
import time
|
||||
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
from configs import dify_config
|
||||
|
||||
|
||||
class SignedUrlParams(BaseModel):
|
||||
sign_key: str = Field(..., description="The sign key")
|
||||
timestamp: str = Field(..., description="Timestamp")
|
||||
nonce: str = Field(..., description="Nonce")
|
||||
sign: str = Field(..., description="Signature")
|
||||
|
||||
|
||||
class UrlSigner:
|
||||
@classmethod
|
||||
def get_signed_url(cls, url: str, sign_key: str, prefix: str) -> str:
|
||||
signed_url_params = cls.get_signed_url_params(sign_key, prefix)
|
||||
return (
|
||||
f"{url}?timestamp={signed_url_params.timestamp}"
|
||||
f"&nonce={signed_url_params.nonce}&sign={signed_url_params.sign}"
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def get_signed_url_params(cls, sign_key: str, prefix: str) -> SignedUrlParams:
|
||||
timestamp = str(int(time.time()))
|
||||
nonce = os.urandom(16).hex()
|
||||
sign = cls._sign(sign_key, timestamp, nonce, prefix)
|
||||
|
||||
return SignedUrlParams(sign_key=sign_key, timestamp=timestamp, nonce=nonce, sign=sign)
|
||||
|
||||
@classmethod
|
||||
def verify(cls, sign_key: str, timestamp: str, nonce: str, sign: str, prefix: str) -> bool:
|
||||
recalculated_sign = cls._sign(sign_key, timestamp, nonce, prefix)
|
||||
|
||||
return sign == recalculated_sign
|
||||
|
||||
@classmethod
|
||||
def _sign(cls, sign_key: str, timestamp: str, nonce: str, prefix: str) -> str:
|
||||
if not dify_config.SECRET_KEY:
|
||||
raise Exception("SECRET_KEY is not set")
|
||||
|
||||
data_to_sign = f"{prefix}|{sign_key}|{timestamp}|{nonce}"
|
||||
secret_key = dify_config.SECRET_KEY.encode()
|
||||
sign = hmac.new(secret_key, data_to_sign.encode(), hashlib.sha256).digest()
|
||||
encoded_sign = base64.urlsafe_b64encode(sign).decode()
|
||||
|
||||
return encoded_sign
|
@@ -135,17 +135,6 @@ class PluginEntity(PluginInstallation):
|
||||
return self
|
||||
|
||||
|
||||
class GithubPackage(BaseModel):
|
||||
repo: str
|
||||
version: str
|
||||
package: str
|
||||
|
||||
|
||||
class GithubVersion(BaseModel):
|
||||
repo: str
|
||||
version: str
|
||||
|
||||
|
||||
class GenericProviderID:
|
||||
organization: str
|
||||
plugin_name: str
|
||||
|
@@ -1,12 +0,0 @@
|
||||
"""Abstract interface for document clean implementations."""
|
||||
|
||||
from core.rag.cleaner.cleaner_base import BaseCleaner
|
||||
|
||||
|
||||
class UnstructuredNonAsciiCharsCleaner(BaseCleaner):
|
||||
def clean(self, content) -> str:
|
||||
"""clean document content."""
|
||||
from unstructured.cleaners.core import clean_extra_whitespace
|
||||
|
||||
# Returns "ITEM 1A: RISK FACTORS"
|
||||
return clean_extra_whitespace(content)
|
@@ -1,15 +0,0 @@
|
||||
"""Abstract interface for document clean implementations."""
|
||||
|
||||
from core.rag.cleaner.cleaner_base import BaseCleaner
|
||||
|
||||
|
||||
class UnstructuredGroupBrokenParagraphsCleaner(BaseCleaner):
|
||||
def clean(self, content) -> str:
|
||||
"""clean document content."""
|
||||
import re
|
||||
|
||||
from unstructured.cleaners.core import group_broken_paragraphs
|
||||
|
||||
para_split_re = re.compile(r"(\s*\n\s*){3}")
|
||||
|
||||
return group_broken_paragraphs(content, paragraph_split=para_split_re)
|
@@ -1,12 +0,0 @@
|
||||
"""Abstract interface for document clean implementations."""
|
||||
|
||||
from core.rag.cleaner.cleaner_base import BaseCleaner
|
||||
|
||||
|
||||
class UnstructuredNonAsciiCharsCleaner(BaseCleaner):
|
||||
def clean(self, content) -> str:
|
||||
"""clean document content."""
|
||||
from unstructured.cleaners.core import clean_non_ascii_chars
|
||||
|
||||
# Returns "This text contains non-ascii characters!"
|
||||
return clean_non_ascii_chars(content)
|
@@ -1,12 +0,0 @@
|
||||
"""Abstract interface for document clean implementations."""
|
||||
|
||||
from core.rag.cleaner.cleaner_base import BaseCleaner
|
||||
|
||||
|
||||
class UnstructuredNonAsciiCharsCleaner(BaseCleaner):
|
||||
def clean(self, content) -> str:
|
||||
"""Replaces unicode quote characters, such as the \x91 character in a string."""
|
||||
|
||||
from unstructured.cleaners.core import replace_unicode_quotes
|
||||
|
||||
return replace_unicode_quotes(content)
|
@@ -1,11 +0,0 @@
|
||||
"""Abstract interface for document clean implementations."""
|
||||
|
||||
from core.rag.cleaner.cleaner_base import BaseCleaner
|
||||
|
||||
|
||||
class UnstructuredTranslateTextCleaner(BaseCleaner):
|
||||
def clean(self, content) -> str:
|
||||
"""clean document content."""
|
||||
from unstructured.cleaners.translate import translate_text
|
||||
|
||||
return translate_text(content)
|
@@ -1,17 +0,0 @@
|
||||
from typing import Optional
|
||||
|
||||
from pydantic import BaseModel
|
||||
|
||||
|
||||
class ClusterEntity(BaseModel):
|
||||
"""
|
||||
Model Config Entity.
|
||||
"""
|
||||
|
||||
name: str
|
||||
cluster_id: str
|
||||
displayName: str
|
||||
region: str
|
||||
spendingLimit: Optional[int] = 1000
|
||||
version: str
|
||||
createdBy: str
|
@@ -9,8 +9,7 @@ from __future__ import annotations
|
||||
|
||||
import contextlib
|
||||
import mimetypes
|
||||
from abc import ABC, abstractmethod
|
||||
from collections.abc import Generator, Iterable, Mapping
|
||||
from collections.abc import Generator, Mapping
|
||||
from io import BufferedReader, BytesIO
|
||||
from pathlib import Path, PurePath
|
||||
from typing import Any, Optional, Union
|
||||
@@ -143,21 +142,3 @@ class Blob(BaseModel):
|
||||
if self.source:
|
||||
str_repr += f" {self.source}"
|
||||
return str_repr
|
||||
|
||||
|
||||
class BlobLoader(ABC):
|
||||
"""Abstract interface for blob loaders implementation.
|
||||
|
||||
Implementer should be able to load raw content from a datasource system according
|
||||
to some criteria and return the raw content lazily as a stream of blobs.
|
||||
"""
|
||||
|
||||
@abstractmethod
|
||||
def yield_blobs(
|
||||
self,
|
||||
) -> Iterable[Blob]:
|
||||
"""A lazy loader for raw data represented by Blob object.
|
||||
|
||||
Returns:
|
||||
A generator over blobs
|
||||
"""
|
||||
|
@@ -1,47 +0,0 @@
|
||||
import logging
|
||||
|
||||
from core.rag.extractor.extractor_base import BaseExtractor
|
||||
from core.rag.models.document import Document
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class UnstructuredPDFExtractor(BaseExtractor):
|
||||
"""Load pdf files.
|
||||
|
||||
|
||||
Args:
|
||||
file_path: Path to the file to load.
|
||||
|
||||
api_url: Unstructured API URL
|
||||
|
||||
api_key: Unstructured API Key
|
||||
"""
|
||||
|
||||
def __init__(self, file_path: str, api_url: str, api_key: str):
|
||||
"""Initialize with file path."""
|
||||
self._file_path = file_path
|
||||
self._api_url = api_url
|
||||
self._api_key = api_key
|
||||
|
||||
def extract(self) -> list[Document]:
|
||||
if self._api_url:
|
||||
from unstructured.partition.api import partition_via_api
|
||||
|
||||
elements = partition_via_api(
|
||||
filename=self._file_path, api_url=self._api_url, api_key=self._api_key, strategy="auto"
|
||||
)
|
||||
else:
|
||||
from unstructured.partition.pdf import partition_pdf
|
||||
|
||||
elements = partition_pdf(filename=self._file_path, strategy="auto")
|
||||
|
||||
from unstructured.chunking.title import chunk_by_title
|
||||
|
||||
chunks = chunk_by_title(elements, max_characters=2000, combine_text_under_n_chars=2000)
|
||||
documents = []
|
||||
for chunk in chunks:
|
||||
text = chunk.text.strip()
|
||||
documents.append(Document(page_content=text))
|
||||
|
||||
return documents
|
@@ -1,34 +0,0 @@
|
||||
import logging
|
||||
|
||||
from core.rag.extractor.extractor_base import BaseExtractor
|
||||
from core.rag.models.document import Document
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class UnstructuredTextExtractor(BaseExtractor):
|
||||
"""Load msg files.
|
||||
|
||||
|
||||
Args:
|
||||
file_path: Path to the file to load.
|
||||
"""
|
||||
|
||||
def __init__(self, file_path: str, api_url: str):
|
||||
"""Initialize with file path."""
|
||||
self._file_path = file_path
|
||||
self._api_url = api_url
|
||||
|
||||
def extract(self) -> list[Document]:
|
||||
from unstructured.partition.text import partition_text
|
||||
|
||||
elements = partition_text(filename=self._file_path)
|
||||
from unstructured.chunking.title import chunk_by_title
|
||||
|
||||
chunks = chunk_by_title(elements, max_characters=2000, combine_text_under_n_chars=2000)
|
||||
documents = []
|
||||
for chunk in chunks:
|
||||
text = chunk.text.strip()
|
||||
documents.append(Document(page_content=text))
|
||||
|
||||
return documents
|
@@ -10,7 +10,6 @@ from typing import (
|
||||
Any,
|
||||
Literal,
|
||||
Optional,
|
||||
TypedDict,
|
||||
TypeVar,
|
||||
Union,
|
||||
)
|
||||
@@ -168,167 +167,6 @@ class TextSplitter(BaseDocumentTransformer, ABC):
|
||||
raise NotImplementedError
|
||||
|
||||
|
||||
class CharacterTextSplitter(TextSplitter):
|
||||
"""Splitting text that looks at characters."""
|
||||
|
||||
def __init__(self, separator: str = "\n\n", **kwargs: Any) -> None:
|
||||
"""Create a new TextSplitter."""
|
||||
super().__init__(**kwargs)
|
||||
self._separator = separator
|
||||
|
||||
def split_text(self, text: str) -> list[str]:
|
||||
"""Split incoming text and return chunks."""
|
||||
# First we naively split the large input into a bunch of smaller ones.
|
||||
splits = _split_text_with_regex(text, self._separator, self._keep_separator)
|
||||
_separator = "" if self._keep_separator else self._separator
|
||||
_good_splits_lengths = [] # cache the lengths of the splits
|
||||
if splits:
|
||||
_good_splits_lengths.extend(self._length_function(splits))
|
||||
return self._merge_splits(splits, _separator, _good_splits_lengths)
|
||||
|
||||
|
||||
class LineType(TypedDict):
|
||||
"""Line type as typed dict."""
|
||||
|
||||
metadata: dict[str, str]
|
||||
content: str
|
||||
|
||||
|
||||
class HeaderType(TypedDict):
|
||||
"""Header type as typed dict."""
|
||||
|
||||
level: int
|
||||
name: str
|
||||
data: str
|
||||
|
||||
|
||||
class MarkdownHeaderTextSplitter:
|
||||
"""Splitting markdown files based on specified headers."""
|
||||
|
||||
def __init__(self, headers_to_split_on: list[tuple[str, str]], return_each_line: bool = False):
|
||||
"""Create a new MarkdownHeaderTextSplitter.
|
||||
|
||||
Args:
|
||||
headers_to_split_on: Headers we want to track
|
||||
return_each_line: Return each line w/ associated headers
|
||||
"""
|
||||
# Output line-by-line or aggregated into chunks w/ common headers
|
||||
self.return_each_line = return_each_line
|
||||
# Given the headers we want to split on,
|
||||
# (e.g., "#, ##, etc") order by length
|
||||
self.headers_to_split_on = sorted(headers_to_split_on, key=lambda split: len(split[0]), reverse=True)
|
||||
|
||||
def aggregate_lines_to_chunks(self, lines: list[LineType]) -> list[Document]:
|
||||
"""Combine lines with common metadata into chunks
|
||||
Args:
|
||||
lines: Line of text / associated header metadata
|
||||
"""
|
||||
aggregated_chunks: list[LineType] = []
|
||||
|
||||
for line in lines:
|
||||
if aggregated_chunks and aggregated_chunks[-1]["metadata"] == line["metadata"]:
|
||||
# If the last line in the aggregated list
|
||||
# has the same metadata as the current line,
|
||||
# append the current content to the last lines's content
|
||||
aggregated_chunks[-1]["content"] += " \n" + line["content"]
|
||||
else:
|
||||
# Otherwise, append the current line to the aggregated list
|
||||
aggregated_chunks.append(line)
|
||||
|
||||
return [Document(page_content=chunk["content"], metadata=chunk["metadata"]) for chunk in aggregated_chunks]
|
||||
|
||||
def split_text(self, text: str) -> list[Document]:
|
||||
"""Split markdown file
|
||||
Args:
|
||||
text: Markdown file"""
|
||||
|
||||
# Split the input text by newline character ("\n").
|
||||
lines = text.split("\n")
|
||||
# Final output
|
||||
lines_with_metadata: list[LineType] = []
|
||||
# Content and metadata of the chunk currently being processed
|
||||
current_content: list[str] = []
|
||||
current_metadata: dict[str, str] = {}
|
||||
# Keep track of the nested header structure
|
||||
# header_stack: List[Dict[str, Union[int, str]]] = []
|
||||
header_stack: list[HeaderType] = []
|
||||
initial_metadata: dict[str, str] = {}
|
||||
|
||||
for line in lines:
|
||||
stripped_line = line.strip()
|
||||
# Check each line against each of the header types (e.g., #, ##)
|
||||
for sep, name in self.headers_to_split_on:
|
||||
# Check if line starts with a header that we intend to split on
|
||||
if stripped_line.startswith(sep) and (
|
||||
# Header with no text OR header is followed by space
|
||||
# Both are valid conditions that sep is being used a header
|
||||
len(stripped_line) == len(sep) or stripped_line[len(sep)] == " "
|
||||
):
|
||||
# Ensure we are tracking the header as metadata
|
||||
if name is not None:
|
||||
# Get the current header level
|
||||
current_header_level = sep.count("#")
|
||||
|
||||
# Pop out headers of lower or same level from the stack
|
||||
while header_stack and header_stack[-1]["level"] >= current_header_level:
|
||||
# We have encountered a new header
|
||||
# at the same or higher level
|
||||
popped_header = header_stack.pop()
|
||||
# Clear the metadata for the
|
||||
# popped header in initial_metadata
|
||||
if popped_header["name"] in initial_metadata:
|
||||
initial_metadata.pop(popped_header["name"])
|
||||
|
||||
# Push the current header to the stack
|
||||
header: HeaderType = {
|
||||
"level": current_header_level,
|
||||
"name": name,
|
||||
"data": stripped_line[len(sep) :].strip(),
|
||||
}
|
||||
header_stack.append(header)
|
||||
# Update initial_metadata with the current header
|
||||
initial_metadata[name] = header["data"]
|
||||
|
||||
# Add the previous line to the lines_with_metadata
|
||||
# only if current_content is not empty
|
||||
if current_content:
|
||||
lines_with_metadata.append(
|
||||
{
|
||||
"content": "\n".join(current_content),
|
||||
"metadata": current_metadata.copy(),
|
||||
}
|
||||
)
|
||||
current_content.clear()
|
||||
|
||||
break
|
||||
else:
|
||||
if stripped_line:
|
||||
current_content.append(stripped_line)
|
||||
elif current_content:
|
||||
lines_with_metadata.append(
|
||||
{
|
||||
"content": "\n".join(current_content),
|
||||
"metadata": current_metadata.copy(),
|
||||
}
|
||||
)
|
||||
current_content.clear()
|
||||
|
||||
current_metadata = initial_metadata.copy()
|
||||
|
||||
if current_content:
|
||||
lines_with_metadata.append({"content": "\n".join(current_content), "metadata": current_metadata})
|
||||
|
||||
# lines_with_metadata has each line with associated header metadata
|
||||
# aggregate these into chunks based on common metadata
|
||||
if not self.return_each_line:
|
||||
return self.aggregate_lines_to_chunks(lines_with_metadata)
|
||||
else:
|
||||
return [
|
||||
Document(page_content=chunk["content"], metadata=chunk["metadata"]) for chunk in lines_with_metadata
|
||||
]
|
||||
|
||||
|
||||
# should be in newer Python versions (3.10+)
|
||||
# @dataclass(frozen=True, kw_only=True, slots=True)
|
||||
@dataclass(frozen=True)
|
||||
class Tokenizer:
|
||||
|
@@ -1,79 +0,0 @@
|
||||
from typing import Optional
|
||||
|
||||
from pydantic import BaseModel
|
||||
|
||||
from core.app.entities.app_invoke_entities import InvokeFrom
|
||||
from core.workflow.nodes.base import BaseIterationState, BaseLoopState, BaseNode
|
||||
from models.enums import UserFrom
|
||||
from models.workflow import Workflow, WorkflowType
|
||||
|
||||
from .node_entities import NodeRunResult
|
||||
from .variable_pool import VariablePool
|
||||
|
||||
|
||||
class WorkflowNodeAndResult:
|
||||
node: BaseNode
|
||||
result: Optional[NodeRunResult] = None
|
||||
|
||||
def __init__(self, node: BaseNode, result: Optional[NodeRunResult] = None):
|
||||
self.node = node
|
||||
self.result = result
|
||||
|
||||
|
||||
class WorkflowRunState:
|
||||
tenant_id: str
|
||||
app_id: str
|
||||
workflow_id: str
|
||||
workflow_type: WorkflowType
|
||||
user_id: str
|
||||
user_from: UserFrom
|
||||
invoke_from: InvokeFrom
|
||||
|
||||
workflow_call_depth: int
|
||||
|
||||
start_at: float
|
||||
variable_pool: VariablePool
|
||||
|
||||
total_tokens: int = 0
|
||||
|
||||
workflow_nodes_and_results: list[WorkflowNodeAndResult]
|
||||
|
||||
class NodeRun(BaseModel):
|
||||
node_id: str
|
||||
iteration_node_id: str
|
||||
loop_node_id: str
|
||||
|
||||
workflow_node_runs: list[NodeRun]
|
||||
workflow_node_steps: int
|
||||
|
||||
current_iteration_state: Optional[BaseIterationState]
|
||||
current_loop_state: Optional[BaseLoopState]
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
workflow: Workflow,
|
||||
start_at: float,
|
||||
variable_pool: VariablePool,
|
||||
user_id: str,
|
||||
user_from: UserFrom,
|
||||
invoke_from: InvokeFrom,
|
||||
workflow_call_depth: int,
|
||||
):
|
||||
self.workflow_id = workflow.id
|
||||
self.tenant_id = workflow.tenant_id
|
||||
self.app_id = workflow.app_id
|
||||
self.workflow_type = WorkflowType.value_of(workflow.type)
|
||||
self.user_id = user_id
|
||||
self.user_from = user_from
|
||||
self.invoke_from = invoke_from
|
||||
self.workflow_call_depth = workflow_call_depth
|
||||
|
||||
self.start_at = start_at
|
||||
self.variable_pool = variable_pool
|
||||
|
||||
self.total_tokens = 0
|
||||
|
||||
self.workflow_node_steps = 1
|
||||
self.workflow_node_runs = []
|
||||
self.current_iteration_state = None
|
||||
self.current_loop_state = None
|
@@ -1,4 +1,3 @@
|
||||
import json
|
||||
from collections.abc import Mapping
|
||||
from typing import Any
|
||||
|
||||
@@ -8,18 +7,6 @@ from core.file.models import File
|
||||
from core.variables import Segment
|
||||
|
||||
|
||||
class WorkflowRuntimeTypeEncoder(json.JSONEncoder):
|
||||
def default(self, o: Any):
|
||||
if isinstance(o, Segment):
|
||||
return o.value
|
||||
elif isinstance(o, File):
|
||||
return o.to_dict()
|
||||
elif isinstance(o, BaseModel):
|
||||
return o.model_dump(mode="json")
|
||||
else:
|
||||
return super().default(o)
|
||||
|
||||
|
||||
class WorkflowRuntimeTypeConverter:
|
||||
def to_json_encodable(self, value: Mapping[str, Any] | None) -> Mapping[str, Any] | None:
|
||||
result = self._to_json_encodable_recursive(value)
|
||||
|
@@ -148,25 +148,6 @@ class StrLen:
|
||||
return value
|
||||
|
||||
|
||||
class FloatRange:
|
||||
"""Restrict input to an float in a range (inclusive)"""
|
||||
|
||||
def __init__(self, low, high, argument="argument"):
|
||||
self.low = low
|
||||
self.high = high
|
||||
self.argument = argument
|
||||
|
||||
def __call__(self, value):
|
||||
value = _get_float(value)
|
||||
if value < self.low or value > self.high:
|
||||
error = "Invalid {arg}: {val}. {arg} must be within the range {lo} - {hi}".format(
|
||||
arg=self.argument, val=value, lo=self.low, hi=self.high
|
||||
)
|
||||
raise ValueError(error)
|
||||
|
||||
return value
|
||||
|
||||
|
||||
class DatetimeString:
|
||||
def __init__(self, format, argument="argument"):
|
||||
self.format = format
|
||||
|
@@ -1,11 +0,0 @@
|
||||
import json
|
||||
|
||||
from pydantic import BaseModel
|
||||
|
||||
|
||||
class PydanticModelEncoder(json.JSONEncoder):
|
||||
def default(self, o):
|
||||
if isinstance(o, BaseModel):
|
||||
return o.model_dump()
|
||||
else:
|
||||
super().default(o)
|
@@ -610,14 +610,6 @@ class InstalledApp(Base):
|
||||
return tenant
|
||||
|
||||
|
||||
class ConversationSource(StrEnum):
|
||||
"""This enumeration is designed for use with `Conversation.from_source`."""
|
||||
|
||||
# NOTE(QuantumGhost): The enumeration members may not cover all possible cases.
|
||||
API = "api"
|
||||
CONSOLE = "console"
|
||||
|
||||
|
||||
class Conversation(Base):
|
||||
__tablename__ = "conversations"
|
||||
__table_args__ = (
|
||||
|
@@ -4,13 +4,6 @@ from typing import Literal, Optional
|
||||
from pydantic import BaseModel
|
||||
|
||||
|
||||
class SegmentUpdateEntity(BaseModel):
|
||||
content: str
|
||||
answer: Optional[str] = None
|
||||
keywords: Optional[list[str]] = None
|
||||
enabled: Optional[bool] = None
|
||||
|
||||
|
||||
class ParentMode(StrEnum):
|
||||
FULL_DOC = "full-doc"
|
||||
PARAGRAPH = "paragraph"
|
||||
@@ -153,10 +146,6 @@ class MetadataUpdateArgs(BaseModel):
|
||||
value: Optional[str | int | float] = None
|
||||
|
||||
|
||||
class MetadataValueUpdateArgs(BaseModel):
|
||||
fields: list[MetadataUpdateArgs]
|
||||
|
||||
|
||||
class MetadataDetail(BaseModel):
|
||||
id: str
|
||||
name: str
|
||||
|
Reference in New Issue
Block a user