Feature/mutil embedding model (#908)

Co-authored-by: JzoNg <jzongcode@gmail.com>
Co-authored-by: jyong <jyong@dify.ai>
Co-authored-by: StyleZhang <jasonapring2015@outlook.com>
This commit is contained in:
Jyong
2023-08-18 17:37:31 +08:00
committed by GitHub
parent 4420281d96
commit db7156dafd
54 changed files with 1704 additions and 278 deletions

View File

@@ -274,6 +274,7 @@ class DatasetDocumentListApi(Resource):
parser.add_argument('duplicate', type=bool, nullable=False, location='json')
parser.add_argument('original_document_id', type=str, required=False, location='json')
parser.add_argument('doc_form', type=str, default='text_model', required=False, nullable=False, location='json')
parser.add_argument('doc_language', type=str, default='English', required=False, nullable=False, location='json')
args = parser.parse_args()
if not dataset.indexing_technique and not args['indexing_technique']:
@@ -282,14 +283,19 @@ class DatasetDocumentListApi(Resource):
# validate args
DocumentService.document_create_args_validate(args)
# check embedding model setting
try:
ModelFactory.get_embedding_model(
tenant_id=current_user.current_tenant_id
tenant_id=current_user.current_tenant_id,
model_provider_name=dataset.embedding_model_provider,
model_name=dataset.embedding_model
)
except LLMBadRequestError:
raise ProviderNotInitializeError(
f"No Embedding Model available. Please configure a valid provider "
f"in the Settings -> Model Provider.")
except ProviderTokenNotInitError as ex:
raise ProviderNotInitializeError(ex.description)
try:
documents, batch = DocumentService.save_document_with_dataset_id(dataset, args, current_user)
@@ -328,6 +334,7 @@ class DatasetInitApi(Resource):
parser.add_argument('data_source', type=dict, required=True, nullable=True, location='json')
parser.add_argument('process_rule', type=dict, required=True, nullable=True, location='json')
parser.add_argument('doc_form', type=str, default='text_model', required=False, nullable=False, location='json')
parser.add_argument('doc_language', type=str, default='English', required=False, nullable=False, location='json')
args = parser.parse_args()
try:
@@ -406,11 +413,13 @@ class DocumentIndexingEstimateApi(DocumentResource):
try:
response = indexing_runner.file_indexing_estimate(current_user.current_tenant_id, [file],
data_process_rule_dict)
data_process_rule_dict, None, dataset_id)
except LLMBadRequestError:
raise ProviderNotInitializeError(
f"No Embedding Model available. Please configure a valid provider "
f"in the Settings -> Model Provider.")
except ProviderTokenNotInitError as ex:
raise ProviderNotInitializeError(ex.description)
return response
@@ -473,22 +482,27 @@ class DocumentBatchIndexingEstimateApi(DocumentResource):
indexing_runner = IndexingRunner()
try:
response = indexing_runner.file_indexing_estimate(current_user.current_tenant_id, file_details,
data_process_rule_dict)
data_process_rule_dict, None, dataset_id)
except LLMBadRequestError:
raise ProviderNotInitializeError(
f"No Embedding Model available. Please configure a valid provider "
f"in the Settings -> Model Provider.")
elif dataset.data_source_type:
except ProviderTokenNotInitError as ex:
raise ProviderNotInitializeError(ex.description)
elif dataset.data_source_type == 'notion_import':
indexing_runner = IndexingRunner()
try:
response = indexing_runner.notion_indexing_estimate(current_user.current_tenant_id,
info_list,
data_process_rule_dict)
data_process_rule_dict,
None, dataset_id)
except LLMBadRequestError:
raise ProviderNotInitializeError(
f"No Embedding Model available. Please configure a valid provider "
f"in the Settings -> Model Provider.")
except ProviderTokenNotInitError as ex:
raise ProviderNotInitializeError(ex.description)
else:
raise ValueError('Data source type not support')
return response
@@ -575,7 +589,8 @@ class DocumentIndexingStatusApi(DocumentResource):
document.completed_segments = completed_segments
document.total_segments = total_segments
if document.is_paused:
document.indexing_status = 'paused'
return marshal(document, self.document_status_fields)
@@ -832,6 +847,22 @@ class DocumentStatusApi(DocumentResource):
remove_document_from_index_task.delay(document_id)
return {'result': 'success'}, 200
elif action == "un_archive":
if not document.archived:
raise InvalidActionError('Document is not archived.')
document.archived = False
document.archived_at = None
document.archived_by = None
document.updated_at = datetime.utcnow()
db.session.commit()
# Set cache to prevent indexing the same document multiple times
redis_client.setex(indexing_cache_key, 600, 1)
add_document_to_index_task.delay(document_id)
return {'result': 'success'}, 200
else:
raise InvalidActionError()