feat: agent node add memory (#15976)
This commit is contained in:
@@ -1,15 +1,18 @@
|
||||
import json
|
||||
from collections.abc import Generator, Mapping, Sequence
|
||||
from typing import Any, cast
|
||||
from typing import Any, Optional, cast
|
||||
|
||||
from core.agent.entities import AgentToolEntity
|
||||
from core.agent.plugin_entities import AgentStrategyParameter
|
||||
from core.model_manager import ModelManager
|
||||
from core.model_runtime.entities.model_entities import ModelType
|
||||
from core.memory.token_buffer_memory import TokenBufferMemory
|
||||
from core.model_manager import ModelInstance, ModelManager
|
||||
from core.model_runtime.entities.model_entities import AIModelEntity, ModelType
|
||||
from core.plugin.manager.exc import PluginDaemonClientSideError
|
||||
from core.plugin.manager.plugin import PluginInstallationManager
|
||||
from core.provider_manager import ProviderManager
|
||||
from core.tools.entities.tool_entities import ToolParameter, ToolProviderType
|
||||
from core.tools.tool_manager import ToolManager
|
||||
from core.variables.segments import StringSegment
|
||||
from core.workflow.entities.node_entities import NodeRunResult
|
||||
from core.workflow.entities.variable_pool import VariablePool
|
||||
from core.workflow.enums import SystemVariableKey
|
||||
@@ -19,7 +22,9 @@ from core.workflow.nodes.enums import NodeType
|
||||
from core.workflow.nodes.event.event import RunCompletedEvent
|
||||
from core.workflow.nodes.tool.tool_node import ToolNode
|
||||
from core.workflow.utils.variable_template_parser import VariableTemplateParser
|
||||
from extensions.ext_database import db
|
||||
from factories.agent_factory import get_plugin_agent_strategy
|
||||
from models.model import Conversation
|
||||
from models.workflow import WorkflowNodeExecutionStatus
|
||||
|
||||
|
||||
@@ -233,17 +238,20 @@ class AgentNode(ToolNode):
|
||||
value = tool_value
|
||||
if parameter.type == "model-selector":
|
||||
value = cast(dict[str, Any], value)
|
||||
model_instance = ModelManager().get_model_instance(
|
||||
tenant_id=self.tenant_id,
|
||||
provider=value.get("provider", ""),
|
||||
model_type=ModelType(value.get("model_type", "")),
|
||||
model=value.get("model", ""),
|
||||
)
|
||||
models = model_instance.model_type_instance.plugin_model_provider.declaration.models
|
||||
finded_model = next((model for model in models if model.model == value.get("model", "")), None)
|
||||
|
||||
value["entity"] = finded_model.model_dump(mode="json") if finded_model else None
|
||||
|
||||
model_instance, model_schema = self._fetch_model(value)
|
||||
# memory config
|
||||
history_prompt_messages = []
|
||||
if node_data.memory:
|
||||
memory = self._fetch_memory(model_instance)
|
||||
if memory:
|
||||
prompt_messages = memory.get_history_prompt_messages(
|
||||
message_limit=node_data.memory.window.size if node_data.memory.window.size else None
|
||||
)
|
||||
history_prompt_messages = [
|
||||
prompt_message.model_dump(mode="json") for prompt_message in prompt_messages
|
||||
]
|
||||
value["history_prompt_messages"] = history_prompt_messages
|
||||
value["entity"] = model_schema.model_dump(mode="json") if model_schema else None
|
||||
result[parameter_name] = value
|
||||
|
||||
return result
|
||||
@@ -297,3 +305,46 @@ class AgentNode(ToolNode):
|
||||
except StopIteration:
|
||||
icon = None
|
||||
return icon
|
||||
|
||||
def _fetch_memory(self, model_instance: ModelInstance) -> Optional[TokenBufferMemory]:
|
||||
# get conversation id
|
||||
conversation_id_variable = self.graph_runtime_state.variable_pool.get(
|
||||
["sys", SystemVariableKey.CONVERSATION_ID.value]
|
||||
)
|
||||
if not isinstance(conversation_id_variable, StringSegment):
|
||||
return None
|
||||
conversation_id = conversation_id_variable.value
|
||||
|
||||
# get conversation
|
||||
conversation = (
|
||||
db.session.query(Conversation)
|
||||
.filter(Conversation.app_id == self.app_id, Conversation.id == conversation_id)
|
||||
.first()
|
||||
)
|
||||
|
||||
if not conversation:
|
||||
return None
|
||||
|
||||
memory = TokenBufferMemory(conversation=conversation, model_instance=model_instance)
|
||||
|
||||
return memory
|
||||
|
||||
def _fetch_model(self, value: dict[str, Any]) -> tuple[ModelInstance, AIModelEntity | None]:
|
||||
provider_manager = ProviderManager()
|
||||
provider_model_bundle = provider_manager.get_provider_model_bundle(
|
||||
tenant_id=self.tenant_id, provider=value.get("provider", ""), model_type=ModelType.LLM
|
||||
)
|
||||
model_name = value.get("model", "")
|
||||
model_credentials = provider_model_bundle.configuration.get_current_credentials(
|
||||
model_type=ModelType.LLM, model=model_name
|
||||
)
|
||||
provider_name = provider_model_bundle.configuration.provider.provider
|
||||
model_type_instance = provider_model_bundle.model_type_instance
|
||||
model_instance = ModelManager().get_model_instance(
|
||||
tenant_id=self.tenant_id,
|
||||
provider=provider_name,
|
||||
model_type=ModelType(value.get("model_type", "")),
|
||||
model=model_name,
|
||||
)
|
||||
model_schema = model_type_instance.get_model_schema(model_name, model_credentials)
|
||||
return model_instance, model_schema
|
||||
|
@@ -3,6 +3,7 @@ from typing import Any, Literal, Union
|
||||
|
||||
from pydantic import BaseModel
|
||||
|
||||
from core.prompt.entities.advanced_prompt_entities import MemoryConfig
|
||||
from core.tools.entities.tool_entities import ToolSelector
|
||||
from core.workflow.nodes.base.entities import BaseNodeData
|
||||
|
||||
@@ -11,6 +12,7 @@ class AgentNodeData(BaseNodeData):
|
||||
agent_strategy_provider_name: str # redundancy
|
||||
agent_strategy_name: str
|
||||
agent_strategy_label: str # redundancy
|
||||
memory: MemoryConfig | None = None
|
||||
|
||||
class AgentInput(BaseModel):
|
||||
value: Union[list[str], list[ToolSelector], Any]
|
||||
|
Reference in New Issue
Block a user