feat: Add Clickzetta Lakehouse vector database integration (#22551)

Co-authored-by: Claude <noreply@anthropic.com>
This commit is contained in:
yunqiqiliang
2025-08-07 14:21:46 +08:00
committed by GitHub
parent 2931c891a7
commit e01510e2a6
25 changed files with 4788 additions and 9 deletions

View File

@@ -0,0 +1,237 @@
import os
import pytest
from core.rag.datasource.vdb.clickzetta.clickzetta_vector import ClickzettaConfig, ClickzettaVector
from core.rag.models.document import Document
from tests.integration_tests.vdb.test_vector_store import AbstractVectorTest, get_example_text, setup_mock_redis
class TestClickzettaVector(AbstractVectorTest):
"""
Test cases for Clickzetta vector database integration.
"""
@pytest.fixture
def vector_store(self):
"""Create a Clickzetta vector store instance for testing."""
# Skip test if Clickzetta credentials are not configured
if not os.getenv("CLICKZETTA_USERNAME"):
pytest.skip("CLICKZETTA_USERNAME is not configured")
if not os.getenv("CLICKZETTA_PASSWORD"):
pytest.skip("CLICKZETTA_PASSWORD is not configured")
if not os.getenv("CLICKZETTA_INSTANCE"):
pytest.skip("CLICKZETTA_INSTANCE is not configured")
config = ClickzettaConfig(
username=os.getenv("CLICKZETTA_USERNAME", ""),
password=os.getenv("CLICKZETTA_PASSWORD", ""),
instance=os.getenv("CLICKZETTA_INSTANCE", ""),
service=os.getenv("CLICKZETTA_SERVICE", "api.clickzetta.com"),
workspace=os.getenv("CLICKZETTA_WORKSPACE", "quick_start"),
vcluster=os.getenv("CLICKZETTA_VCLUSTER", "default_ap"),
schema=os.getenv("CLICKZETTA_SCHEMA", "dify_test"),
batch_size=10, # Small batch size for testing
enable_inverted_index=True,
analyzer_type="chinese",
analyzer_mode="smart",
vector_distance_function="cosine_distance",
)
with setup_mock_redis():
vector = ClickzettaVector(
collection_name="test_collection_" + str(os.getpid()),
config=config
)
yield vector
# Cleanup: delete the test collection
try:
vector.delete()
except Exception:
pass
def test_clickzetta_vector_basic_operations(self, vector_store):
"""Test basic CRUD operations on Clickzetta vector store."""
# Prepare test data
texts = [
"这是第一个测试文档,包含一些中文内容。",
"This is the second test document with English content.",
"第三个文档混合了English和中文内容。",
]
embeddings = [
[0.1, 0.2, 0.3, 0.4],
[0.5, 0.6, 0.7, 0.8],
[0.9, 1.0, 1.1, 1.2],
]
documents = [
Document(page_content=text, metadata={"doc_id": f"doc_{i}", "source": "test"})
for i, text in enumerate(texts)
]
# Test create (initial insert)
vector_store.create(texts=documents, embeddings=embeddings)
# Test text_exists
assert vector_store.text_exists("doc_0")
assert not vector_store.text_exists("doc_999")
# Test search_by_vector
query_vector = [0.1, 0.2, 0.3, 0.4]
results = vector_store.search_by_vector(query_vector, top_k=2)
assert len(results) > 0
assert results[0].page_content == texts[0] # Should match the first document
# Test search_by_full_text (Chinese)
results = vector_store.search_by_full_text("中文", top_k=3)
assert len(results) >= 2 # Should find documents with Chinese content
# Test search_by_full_text (English)
results = vector_store.search_by_full_text("English", top_k=3)
assert len(results) >= 2 # Should find documents with English content
# Test delete_by_ids
vector_store.delete_by_ids(["doc_0"])
assert not vector_store.text_exists("doc_0")
assert vector_store.text_exists("doc_1")
# Test delete_by_metadata_field
vector_store.delete_by_metadata_field("source", "test")
assert not vector_store.text_exists("doc_1")
assert not vector_store.text_exists("doc_2")
def test_clickzetta_vector_advanced_search(self, vector_store):
"""Test advanced search features of Clickzetta vector store."""
# Prepare test data with more complex metadata
documents = []
embeddings = []
for i in range(10):
doc = Document(
page_content=f"Document {i}: " + get_example_text(),
metadata={
"doc_id": f"adv_doc_{i}",
"category": "technical" if i % 2 == 0 else "general",
"document_id": f"doc_{i // 3}", # Group documents
"importance": i,
}
)
documents.append(doc)
# Create varied embeddings
embeddings.append([0.1 * i, 0.2 * i, 0.3 * i, 0.4 * i])
vector_store.create(texts=documents, embeddings=embeddings)
# Test vector search with document filter
query_vector = [0.5, 1.0, 1.5, 2.0]
results = vector_store.search_by_vector(
query_vector,
top_k=5,
document_ids_filter=["doc_0", "doc_1"]
)
assert len(results) > 0
# All results should belong to doc_0 or doc_1 groups
for result in results:
assert result.metadata["document_id"] in ["doc_0", "doc_1"]
# Test score threshold
results = vector_store.search_by_vector(
query_vector,
top_k=10,
score_threshold=0.5
)
# Check that all results have a score above threshold
for result in results:
assert result.metadata.get("score", 0) >= 0.5
def test_clickzetta_batch_operations(self, vector_store):
"""Test batch insertion operations."""
# Prepare large batch of documents
batch_size = 25
documents = []
embeddings = []
for i in range(batch_size):
doc = Document(
page_content=f"Batch document {i}: This is a test document for batch processing.",
metadata={"doc_id": f"batch_doc_{i}", "batch": "test_batch"}
)
documents.append(doc)
embeddings.append([0.1 * (i % 10), 0.2 * (i % 10), 0.3 * (i % 10), 0.4 * (i % 10)])
# Test batch insert
vector_store.add_texts(documents=documents, embeddings=embeddings)
# Verify all documents were inserted
for i in range(batch_size):
assert vector_store.text_exists(f"batch_doc_{i}")
# Clean up
vector_store.delete_by_metadata_field("batch", "test_batch")
def test_clickzetta_edge_cases(self, vector_store):
"""Test edge cases and error handling."""
# Test empty operations
vector_store.create(texts=[], embeddings=[])
vector_store.add_texts(documents=[], embeddings=[])
vector_store.delete_by_ids([])
# Test special characters in content
special_doc = Document(
page_content="Special chars: 'quotes', \"double\", \\backslash, \n newline",
metadata={"doc_id": "special_doc", "test": "edge_case"}
)
embeddings = [[0.1, 0.2, 0.3, 0.4]]
vector_store.add_texts(documents=[special_doc], embeddings=embeddings)
assert vector_store.text_exists("special_doc")
# Test search with special characters
results = vector_store.search_by_full_text("quotes", top_k=1)
if results: # Full-text search might not be available
assert len(results) > 0
# Clean up
vector_store.delete_by_ids(["special_doc"])
def test_clickzetta_full_text_search_modes(self, vector_store):
"""Test different full-text search capabilities."""
# Prepare documents with various language content
documents = [
Document(
page_content="云器科技提供强大的Lakehouse解决方案",
metadata={"doc_id": "cn_doc_1", "lang": "chinese"}
),
Document(
page_content="Clickzetta provides powerful Lakehouse solutions",
metadata={"doc_id": "en_doc_1", "lang": "english"}
),
Document(
page_content="Lakehouse是现代数据架构的重要组成部分",
metadata={"doc_id": "cn_doc_2", "lang": "chinese"}
),
Document(
page_content="Modern data architecture includes Lakehouse technology",
metadata={"doc_id": "en_doc_2", "lang": "english"}
),
]
embeddings = [[0.1, 0.2, 0.3, 0.4] for _ in documents]
vector_store.create(texts=documents, embeddings=embeddings)
# Test Chinese full-text search
results = vector_store.search_by_full_text("Lakehouse", top_k=4)
assert len(results) >= 2 # Should find at least documents with "Lakehouse"
# Test English full-text search
results = vector_store.search_by_full_text("solutions", top_k=2)
assert len(results) >= 1 # Should find English documents with "solutions"
# Test mixed search
results = vector_store.search_by_full_text("数据架构", top_k=2)
assert len(results) >= 1 # Should find Chinese documents with this phrase
# Clean up
vector_store.delete_by_metadata_field("lang", "chinese")
vector_store.delete_by_metadata_field("lang", "english")