Feat: support azure openai for temporary (#101)
This commit is contained in:
@@ -11,9 +11,10 @@ from core.llm.error_handle_wraps import handle_llm_exceptions, handle_llm_except
|
||||
|
||||
@retry(reraise=True, wait=wait_random_exponential(min=1, max=20), stop=stop_after_attempt(6))
|
||||
def get_embedding(
|
||||
text: str,
|
||||
engine: Optional[str] = None,
|
||||
openai_api_key: Optional[str] = None,
|
||||
text: str,
|
||||
engine: Optional[str] = None,
|
||||
api_key: Optional[str] = None,
|
||||
**kwargs
|
||||
) -> List[float]:
|
||||
"""Get embedding.
|
||||
|
||||
@@ -25,11 +26,12 @@ def get_embedding(
|
||||
|
||||
"""
|
||||
text = text.replace("\n", " ")
|
||||
return openai.Embedding.create(input=[text], engine=engine, api_key=openai_api_key)["data"][0]["embedding"]
|
||||
return openai.Embedding.create(input=[text], engine=engine, api_key=api_key, **kwargs)["data"][0]["embedding"]
|
||||
|
||||
|
||||
@retry(reraise=True, wait=wait_random_exponential(min=1, max=20), stop=stop_after_attempt(6))
|
||||
async def aget_embedding(text: str, engine: Optional[str] = None, openai_api_key: Optional[str] = None) -> List[float]:
|
||||
async def aget_embedding(text: str, engine: Optional[str] = None, api_key: Optional[str] = None, **kwargs) -> List[
|
||||
float]:
|
||||
"""Asynchronously get embedding.
|
||||
|
||||
NOTE: Copied from OpenAI's embedding utils:
|
||||
@@ -42,16 +44,17 @@ async def aget_embedding(text: str, engine: Optional[str] = None, openai_api_key
|
||||
# replace newlines, which can negatively affect performance.
|
||||
text = text.replace("\n", " ")
|
||||
|
||||
return (await openai.Embedding.acreate(input=[text], engine=engine, api_key=openai_api_key))["data"][0][
|
||||
return (await openai.Embedding.acreate(input=[text], engine=engine, api_key=api_key, **kwargs))["data"][0][
|
||||
"embedding"
|
||||
]
|
||||
|
||||
|
||||
@retry(reraise=True, wait=wait_random_exponential(min=1, max=20), stop=stop_after_attempt(6))
|
||||
def get_embeddings(
|
||||
list_of_text: List[str],
|
||||
engine: Optional[str] = None,
|
||||
openai_api_key: Optional[str] = None
|
||||
list_of_text: List[str],
|
||||
engine: Optional[str] = None,
|
||||
api_key: Optional[str] = None,
|
||||
**kwargs
|
||||
) -> List[List[float]]:
|
||||
"""Get embeddings.
|
||||
|
||||
@@ -67,14 +70,14 @@ def get_embeddings(
|
||||
# replace newlines, which can negatively affect performance.
|
||||
list_of_text = [text.replace("\n", " ") for text in list_of_text]
|
||||
|
||||
data = openai.Embedding.create(input=list_of_text, engine=engine, api_key=openai_api_key).data
|
||||
data = openai.Embedding.create(input=list_of_text, engine=engine, api_key=api_key, **kwargs).data
|
||||
data = sorted(data, key=lambda x: x["index"]) # maintain the same order as input.
|
||||
return [d["embedding"] for d in data]
|
||||
|
||||
|
||||
@retry(reraise=True, wait=wait_random_exponential(min=1, max=20), stop=stop_after_attempt(6))
|
||||
async def aget_embeddings(
|
||||
list_of_text: List[str], engine: Optional[str] = None, openai_api_key: Optional[str] = None
|
||||
list_of_text: List[str], engine: Optional[str] = None, api_key: Optional[str] = None, **kwargs
|
||||
) -> List[List[float]]:
|
||||
"""Asynchronously get embeddings.
|
||||
|
||||
@@ -90,7 +93,7 @@ async def aget_embeddings(
|
||||
# replace newlines, which can negatively affect performance.
|
||||
list_of_text = [text.replace("\n", " ") for text in list_of_text]
|
||||
|
||||
data = (await openai.Embedding.acreate(input=list_of_text, engine=engine, api_key=openai_api_key)).data
|
||||
data = (await openai.Embedding.acreate(input=list_of_text, engine=engine, api_key=api_key, **kwargs)).data
|
||||
data = sorted(data, key=lambda x: x["index"]) # maintain the same order as input.
|
||||
return [d["embedding"] for d in data]
|
||||
|
||||
@@ -98,19 +101,30 @@ async def aget_embeddings(
|
||||
class OpenAIEmbedding(BaseEmbedding):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
mode: str = OpenAIEmbeddingMode.TEXT_SEARCH_MODE,
|
||||
model: str = OpenAIEmbeddingModelType.TEXT_EMBED_ADA_002,
|
||||
deployment_name: Optional[str] = None,
|
||||
openai_api_key: Optional[str] = None,
|
||||
**kwargs: Any,
|
||||
self,
|
||||
mode: str = OpenAIEmbeddingMode.TEXT_SEARCH_MODE,
|
||||
model: str = OpenAIEmbeddingModelType.TEXT_EMBED_ADA_002,
|
||||
deployment_name: Optional[str] = None,
|
||||
openai_api_key: Optional[str] = None,
|
||||
**kwargs: Any,
|
||||
) -> None:
|
||||
"""Init params."""
|
||||
super().__init__(**kwargs)
|
||||
new_kwargs = {}
|
||||
|
||||
if 'embed_batch_size' in kwargs:
|
||||
new_kwargs['embed_batch_size'] = kwargs['embed_batch_size']
|
||||
|
||||
if 'tokenizer' in kwargs:
|
||||
new_kwargs['tokenizer'] = kwargs['tokenizer']
|
||||
|
||||
super().__init__(**new_kwargs)
|
||||
self.mode = OpenAIEmbeddingMode(mode)
|
||||
self.model = OpenAIEmbeddingModelType(model)
|
||||
self.deployment_name = deployment_name
|
||||
self.openai_api_key = openai_api_key
|
||||
self.openai_api_type = kwargs.get('openai_api_type')
|
||||
self.openai_api_version = kwargs.get('openai_api_version')
|
||||
self.openai_api_base = kwargs.get('openai_api_base')
|
||||
|
||||
@handle_llm_exceptions
|
||||
def _get_query_embedding(self, query: str) -> List[float]:
|
||||
@@ -122,7 +136,9 @@ class OpenAIEmbedding(BaseEmbedding):
|
||||
if key not in _QUERY_MODE_MODEL_DICT:
|
||||
raise ValueError(f"Invalid mode, model combination: {key}")
|
||||
engine = _QUERY_MODE_MODEL_DICT[key]
|
||||
return get_embedding(query, engine=engine, openai_api_key=self.openai_api_key)
|
||||
return get_embedding(query, engine=engine, api_key=self.openai_api_key,
|
||||
api_type=self.openai_api_type, api_version=self.openai_api_version,
|
||||
api_base=self.openai_api_base)
|
||||
|
||||
def _get_text_embedding(self, text: str) -> List[float]:
|
||||
"""Get text embedding."""
|
||||
@@ -133,7 +149,9 @@ class OpenAIEmbedding(BaseEmbedding):
|
||||
if key not in _TEXT_MODE_MODEL_DICT:
|
||||
raise ValueError(f"Invalid mode, model combination: {key}")
|
||||
engine = _TEXT_MODE_MODEL_DICT[key]
|
||||
return get_embedding(text, engine=engine, openai_api_key=self.openai_api_key)
|
||||
return get_embedding(text, engine=engine, api_key=self.openai_api_key,
|
||||
api_type=self.openai_api_type, api_version=self.openai_api_version,
|
||||
api_base=self.openai_api_base)
|
||||
|
||||
async def _aget_text_embedding(self, text: str) -> List[float]:
|
||||
"""Asynchronously get text embedding."""
|
||||
@@ -144,7 +162,9 @@ class OpenAIEmbedding(BaseEmbedding):
|
||||
if key not in _TEXT_MODE_MODEL_DICT:
|
||||
raise ValueError(f"Invalid mode, model combination: {key}")
|
||||
engine = _TEXT_MODE_MODEL_DICT[key]
|
||||
return await aget_embedding(text, engine=engine, openai_api_key=self.openai_api_key)
|
||||
return await aget_embedding(text, engine=engine, api_key=self.openai_api_key,
|
||||
api_type=self.openai_api_type, api_version=self.openai_api_version,
|
||||
api_base=self.openai_api_base)
|
||||
|
||||
def _get_text_embeddings(self, texts: List[str]) -> List[List[float]]:
|
||||
"""Get text embeddings.
|
||||
@@ -160,7 +180,9 @@ class OpenAIEmbedding(BaseEmbedding):
|
||||
if key not in _TEXT_MODE_MODEL_DICT:
|
||||
raise ValueError(f"Invalid mode, model combination: {key}")
|
||||
engine = _TEXT_MODE_MODEL_DICT[key]
|
||||
embeddings = get_embeddings(texts, engine=engine, openai_api_key=self.openai_api_key)
|
||||
embeddings = get_embeddings(texts, engine=engine, api_key=self.openai_api_key,
|
||||
api_type=self.openai_api_type, api_version=self.openai_api_version,
|
||||
api_base=self.openai_api_base)
|
||||
return embeddings
|
||||
|
||||
async def _aget_text_embeddings(self, texts: List[str]) -> List[List[float]]:
|
||||
@@ -172,5 +194,7 @@ class OpenAIEmbedding(BaseEmbedding):
|
||||
if key not in _TEXT_MODE_MODEL_DICT:
|
||||
raise ValueError(f"Invalid mode, model combination: {key}")
|
||||
engine = _TEXT_MODE_MODEL_DICT[key]
|
||||
embeddings = await aget_embeddings(texts, engine=engine, openai_api_key=self.openai_api_key)
|
||||
embeddings = await aget_embeddings(texts, engine=engine, api_key=self.openai_api_key,
|
||||
api_type=self.openai_api_type, api_version=self.openai_api_version,
|
||||
api_base=self.openai_api_base)
|
||||
return embeddings
|
||||
|
Reference in New Issue
Block a user