Refactor: use logger = logging.getLogger(__name__) in logging (#24515)
Co-authored-by: Yongtao Huang <99629139+hyongtao-db@users.noreply.github.com> Co-authored-by: autofix-ci[bot] <114827586+autofix-ci[bot]@users.noreply.github.com> Co-authored-by: crazywoola <100913391+crazywoola@users.noreply.github.com>
This commit is contained in:
@@ -31,6 +31,8 @@ from core.workflow.entities.workflow_node_execution import WorkflowNodeExecution
|
||||
from core.workflow.graph_engine.entities.event import AgentLogEvent
|
||||
from models import App, Message, WorkflowNodeExecutionModel, db
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class LLMGenerator:
|
||||
@classmethod
|
||||
@@ -68,7 +70,7 @@ class LLMGenerator:
|
||||
result_dict = json.loads(cleaned_answer)
|
||||
answer = result_dict["Your Output"]
|
||||
except json.JSONDecodeError as e:
|
||||
logging.exception("Failed to generate name after answer, use query instead")
|
||||
logger.exception("Failed to generate name after answer, use query instead")
|
||||
answer = query
|
||||
name = answer.strip()
|
||||
|
||||
@@ -125,7 +127,7 @@ class LLMGenerator:
|
||||
except InvokeError:
|
||||
questions = []
|
||||
except Exception:
|
||||
logging.exception("Failed to generate suggested questions after answer")
|
||||
logger.exception("Failed to generate suggested questions after answer")
|
||||
questions = []
|
||||
|
||||
return questions
|
||||
@@ -173,7 +175,7 @@ class LLMGenerator:
|
||||
error = str(e)
|
||||
error_step = "generate rule config"
|
||||
except Exception as e:
|
||||
logging.exception("Failed to generate rule config, model: %s", model_config.get("name"))
|
||||
logger.exception("Failed to generate rule config, model: %s", model_config.get("name"))
|
||||
rule_config["error"] = str(e)
|
||||
|
||||
rule_config["error"] = f"Failed to {error_step}. Error: {error}" if error else ""
|
||||
@@ -270,7 +272,7 @@ class LLMGenerator:
|
||||
error_step = "generate conversation opener"
|
||||
|
||||
except Exception as e:
|
||||
logging.exception("Failed to generate rule config, model: %s", model_config.get("name"))
|
||||
logger.exception("Failed to generate rule config, model: %s", model_config.get("name"))
|
||||
rule_config["error"] = str(e)
|
||||
|
||||
rule_config["error"] = f"Failed to {error_step}. Error: {error}" if error else ""
|
||||
@@ -319,7 +321,7 @@ class LLMGenerator:
|
||||
error = str(e)
|
||||
return {"code": "", "language": code_language, "error": f"Failed to generate code. Error: {error}"}
|
||||
except Exception as e:
|
||||
logging.exception(
|
||||
logger.exception(
|
||||
"Failed to invoke LLM model, model: %s, language: %s", model_config.get("name"), code_language
|
||||
)
|
||||
return {"code": "", "language": code_language, "error": f"An unexpected error occurred: {str(e)}"}
|
||||
@@ -392,7 +394,7 @@ class LLMGenerator:
|
||||
error = str(e)
|
||||
return {"output": "", "error": f"Failed to generate JSON Schema. Error: {error}"}
|
||||
except Exception as e:
|
||||
logging.exception("Failed to invoke LLM model, model: %s", model_config.get("name"))
|
||||
logger.exception("Failed to invoke LLM model, model: %s", model_config.get("name"))
|
||||
return {"output": "", "error": f"An unexpected error occurred: {str(e)}"}
|
||||
|
||||
@staticmethod
|
||||
@@ -570,5 +572,5 @@ class LLMGenerator:
|
||||
error = str(e)
|
||||
return {"error": f"Failed to generate code. Error: {error}"}
|
||||
except Exception as e:
|
||||
logging.exception("Failed to invoke LLM model, model: %s", model_config.get("name"), exc_info=e)
|
||||
logger.exception("Failed to invoke LLM model, model: " + json.dumps(model_config.get("name")), exc_info=e)
|
||||
return {"error": f"An unexpected error occurred: {str(e)}"}
|
||||
|
Reference in New Issue
Block a user