Files
dify/api/core/mcp/server/streamable_http.py
Yongtao Huang db53656a45 Fix jsonschema compliance: use number instead of float (#25049)
Signed-off-by: Yongtao Huang<yongtaoh2022@gmail.com>
Co-authored-by: autofix-ci[bot] <114827586+autofix-ci[bot]@users.noreply.github.com>
2025-09-03 22:27:41 +08:00

263 lines
8.9 KiB
Python

import json
import logging
from collections.abc import Mapping
from typing import Any, cast
from configs import dify_config
from core.app.app_config.entities import VariableEntity, VariableEntityType
from core.app.entities.app_invoke_entities import InvokeFrom
from core.app.features.rate_limiting.rate_limit import RateLimitGenerator
from core.mcp import types as mcp_types
from models.model import App, AppMCPServer, AppMode, EndUser
from services.app_generate_service import AppGenerateService
logger = logging.getLogger(__name__)
def handle_mcp_request(
app: App,
request: mcp_types.ClientRequest,
user_input_form: list[VariableEntity],
mcp_server: AppMCPServer,
end_user: EndUser | None = None,
request_id: int | str = 1,
) -> mcp_types.JSONRPCResponse | mcp_types.JSONRPCError:
"""
Handle MCP request and return JSON-RPC response
Args:
app: The Dify app instance
request: The JSON-RPC request message
user_input_form: List of variable entities for the app
mcp_server: The MCP server configuration
end_user: Optional end user
request_id: The request ID
Returns:
JSON-RPC response or error
"""
request_type = type(request.root)
def create_success_response(result_data: mcp_types.Result) -> mcp_types.JSONRPCResponse:
"""Create success response with business result data"""
return mcp_types.JSONRPCResponse(
jsonrpc="2.0",
id=request_id,
result=result_data.model_dump(by_alias=True, mode="json", exclude_none=True),
)
def create_error_response(code: int, message: str) -> mcp_types.JSONRPCError:
"""Create error response with error code and message"""
from core.mcp.types import ErrorData
error_data = ErrorData(code=code, message=message)
return mcp_types.JSONRPCError(
jsonrpc="2.0",
id=request_id,
error=error_data,
)
# Request handler mapping using functional approach
request_handlers = {
mcp_types.InitializeRequest: lambda: handle_initialize(mcp_server.description),
mcp_types.ListToolsRequest: lambda: handle_list_tools(
app.name, app.mode, user_input_form, mcp_server.description, mcp_server.parameters_dict
),
mcp_types.CallToolRequest: lambda: handle_call_tool(app, request, user_input_form, end_user),
mcp_types.PingRequest: lambda: handle_ping(),
}
try:
# Dispatch request to appropriate handler
handler = request_handlers.get(request_type)
if handler:
return create_success_response(handler())
else:
return create_error_response(mcp_types.METHOD_NOT_FOUND, f"Method not found: {request_type.__name__}")
except ValueError as e:
logger.exception("Invalid params")
return create_error_response(mcp_types.INVALID_PARAMS, str(e))
except Exception as e:
logger.exception("Internal server error")
return create_error_response(mcp_types.INTERNAL_ERROR, "Internal server error: " + str(e))
def handle_ping() -> mcp_types.EmptyResult:
"""Handle ping request"""
return mcp_types.EmptyResult()
def handle_initialize(description: str) -> mcp_types.InitializeResult:
"""Handle initialize request"""
capabilities = mcp_types.ServerCapabilities(
tools=mcp_types.ToolsCapability(listChanged=False),
)
return mcp_types.InitializeResult(
protocolVersion=mcp_types.SERVER_LATEST_PROTOCOL_VERSION,
capabilities=capabilities,
serverInfo=mcp_types.Implementation(name="Dify", version=dify_config.project.version),
instructions=description,
)
def handle_list_tools(
app_name: str,
app_mode: str,
user_input_form: list[VariableEntity],
description: str,
parameters_dict: dict[str, str],
) -> mcp_types.ListToolsResult:
"""Handle list tools request"""
parameter_schema = build_parameter_schema(app_mode, user_input_form, parameters_dict)
return mcp_types.ListToolsResult(
tools=[
mcp_types.Tool(
name=app_name,
description=description,
inputSchema=parameter_schema,
)
],
)
def handle_call_tool(
app: App,
request: mcp_types.ClientRequest,
user_input_form: list[VariableEntity],
end_user: EndUser | None,
) -> mcp_types.CallToolResult:
"""Handle call tool request"""
request_obj = cast(mcp_types.CallToolRequest, request.root)
args = prepare_tool_arguments(app, request_obj.params.arguments or {})
if not end_user:
raise ValueError("End user not found")
response = AppGenerateService.generate(
app,
end_user,
args,
InvokeFrom.SERVICE_API,
streaming=app.mode == AppMode.AGENT_CHAT.value,
)
answer = extract_answer_from_response(app, response)
return mcp_types.CallToolResult(content=[mcp_types.TextContent(text=answer, type="text")])
def build_parameter_schema(
app_mode: str,
user_input_form: list[VariableEntity],
parameters_dict: dict[str, str],
) -> dict[str, Any]:
"""Build parameter schema for the tool"""
parameters, required = convert_input_form_to_parameters(user_input_form, parameters_dict)
if app_mode in {AppMode.COMPLETION.value, AppMode.WORKFLOW.value}:
return {
"type": "object",
"properties": parameters,
"required": required,
}
return {
"type": "object",
"properties": {
"query": {"type": "string", "description": "User Input/Question content"},
**parameters,
},
"required": ["query", *required],
}
def prepare_tool_arguments(app: App, arguments: dict[str, Any]) -> dict[str, Any]:
"""Prepare arguments based on app mode"""
if app.mode == AppMode.WORKFLOW.value:
return {"inputs": arguments}
elif app.mode == AppMode.COMPLETION.value:
return {"query": "", "inputs": arguments}
else:
# Chat modes - create a copy to avoid modifying original dict
args_copy = arguments.copy()
query = args_copy.pop("query", "")
return {"query": query, "inputs": args_copy}
def extract_answer_from_response(app: App, response: Any) -> str:
"""Extract answer from app generate response"""
answer = ""
if isinstance(response, RateLimitGenerator):
answer = process_streaming_response(response)
elif isinstance(response, Mapping):
answer = process_mapping_response(app, response)
else:
logger.warning("Unexpected response type: %s", type(response))
return answer
def process_streaming_response(response: RateLimitGenerator) -> str:
"""Process streaming response for agent chat mode"""
answer = ""
for item in response.generator:
if isinstance(item, str) and item.startswith("data: "):
try:
json_str = item[6:].strip()
parsed_data = json.loads(json_str)
if parsed_data.get("event") == "agent_thought":
answer += parsed_data.get("thought", "")
except json.JSONDecodeError:
continue
return answer
def process_mapping_response(app: App, response: Mapping) -> str:
"""Process mapping response based on app mode"""
if app.mode in {
AppMode.ADVANCED_CHAT.value,
AppMode.COMPLETION.value,
AppMode.CHAT.value,
AppMode.AGENT_CHAT.value,
}:
return response.get("answer", "")
elif app.mode == AppMode.WORKFLOW.value:
return json.dumps(response["data"]["outputs"], ensure_ascii=False)
else:
raise ValueError("Invalid app mode: " + str(app.mode))
def convert_input_form_to_parameters(
user_input_form: list[VariableEntity],
parameters_dict: dict[str, str],
) -> tuple[dict[str, dict[str, Any]], list[str]]:
"""Convert user input form to parameter schema"""
parameters: dict[str, dict[str, Any]] = {}
required = []
for item in user_input_form:
if item.type in (
VariableEntityType.FILE,
VariableEntityType.FILE_LIST,
VariableEntityType.EXTERNAL_DATA_TOOL,
):
continue
parameters[item.variable] = {}
if item.required:
required.append(item.variable)
# if the workflow republished, the parameters not changed
# we should not raise error here
description = parameters_dict.get(item.variable, "")
parameters[item.variable]["description"] = description
if item.type in (VariableEntityType.TEXT_INPUT, VariableEntityType.PARAGRAPH):
parameters[item.variable]["type"] = "string"
elif item.type == VariableEntityType.SELECT:
parameters[item.variable]["type"] = "string"
parameters[item.variable]["enum"] = item.options
elif item.type == VariableEntityType.NUMBER:
parameters[item.variable]["type"] = "number"
return parameters, required