fix:hard-coded top-k fallback issue. (#24879)

This commit is contained in:
Frederick2313072
2025-09-01 15:46:37 +08:00
committed by GitHub
parent d41d4deaac
commit 5b3cc560d5
11 changed files with 16 additions and 16 deletions

View File

@@ -24,7 +24,7 @@ default_retrieval_model = {
"search_method": RetrievalMethod.SEMANTIC_SEARCH.value,
"reranking_enable": False,
"reranking_model": {"reranking_provider_name": "", "reranking_model_name": ""},
"top_k": 2,
"top_k": 4,
"score_threshold_enabled": False,
}

View File

@@ -304,7 +304,7 @@ class CouchbaseVector(BaseVector):
return docs
def search_by_full_text(self, query: str, **kwargs: Any) -> list[Document]:
top_k = kwargs.get("top_k", 2)
top_k = kwargs.get("top_k", 4)
try:
CBrequest = search.SearchRequest.create(search.QueryStringQuery("text:" + query))
search_iter = self._scope.search(

View File

@@ -65,7 +65,7 @@ default_retrieval_model: dict[str, Any] = {
"search_method": RetrievalMethod.SEMANTIC_SEARCH.value,
"reranking_enable": False,
"reranking_model": {"reranking_provider_name": "", "reranking_model_name": ""},
"top_k": 2,
"top_k": 4,
"score_threshold_enabled": False,
}
@@ -647,7 +647,7 @@ class DatasetRetrieval:
retrieval_method=retrieval_model["search_method"],
dataset_id=dataset.id,
query=query,
top_k=retrieval_model.get("top_k") or 2,
top_k=retrieval_model.get("top_k") or 4,
score_threshold=retrieval_model.get("score_threshold", 0.0)
if retrieval_model["score_threshold_enabled"]
else 0.0,
@@ -743,7 +743,7 @@ class DatasetRetrieval:
tool = DatasetMultiRetrieverTool.from_dataset(
dataset_ids=[dataset.id for dataset in available_datasets],
tenant_id=tenant_id,
top_k=retrieve_config.top_k or 2,
top_k=retrieve_config.top_k or 4,
score_threshold=retrieve_config.score_threshold,
hit_callbacks=[hit_callback],
return_resource=return_resource,

View File

@@ -181,7 +181,7 @@ class DatasetMultiRetrieverTool(DatasetRetrieverBaseTool):
retrieval_method="keyword_search",
dataset_id=dataset.id,
query=query,
top_k=retrieval_model.get("top_k") or 2,
top_k=retrieval_model.get("top_k") or 4,
)
if documents:
all_documents.extend(documents)
@@ -192,7 +192,7 @@ class DatasetMultiRetrieverTool(DatasetRetrieverBaseTool):
retrieval_method=retrieval_model["search_method"],
dataset_id=dataset.id,
query=query,
top_k=retrieval_model.get("top_k") or 2,
top_k=retrieval_model.get("top_k") or 4,
score_threshold=retrieval_model.get("score_threshold", 0.0)
if retrieval_model["score_threshold_enabled"]
else 0.0,

View File

@@ -13,7 +13,7 @@ class DatasetRetrieverBaseTool(BaseModel, ABC):
name: str = "dataset"
description: str = "use this to retrieve a dataset. "
tenant_id: str
top_k: int = 2
top_k: int = 4
score_threshold: Optional[float] = None
hit_callbacks: list[DatasetIndexToolCallbackHandler] = []
return_resource: bool

View File

@@ -78,7 +78,7 @@ default_retrieval_model = {
"search_method": RetrievalMethod.SEMANTIC_SEARCH.value,
"reranking_enable": False,
"reranking_model": {"reranking_provider_name": "", "reranking_model_name": ""},
"top_k": 2,
"top_k": 4,
"score_threshold_enabled": False,
}

View File

@@ -1149,7 +1149,7 @@ class DocumentService:
"search_method": RetrievalMethod.SEMANTIC_SEARCH.value,
"reranking_enable": False,
"reranking_model": {"reranking_provider_name": "", "reranking_model_name": ""},
"top_k": 2,
"top_k": 4,
"score_threshold_enabled": False,
}
@@ -1612,7 +1612,7 @@ class DocumentService:
search_method=RetrievalMethod.SEMANTIC_SEARCH.value,
reranking_enable=False,
reranking_model=RerankingModel(reranking_provider_name="", reranking_model_name=""),
top_k=2,
top_k=4,
score_threshold_enabled=False,
)
# save dataset

View File

@@ -18,7 +18,7 @@ default_retrieval_model = {
"search_method": RetrievalMethod.SEMANTIC_SEARCH.value,
"reranking_enable": False,
"reranking_model": {"reranking_provider_name": "", "reranking_model_name": ""},
"top_k": 2,
"top_k": 4,
"score_threshold_enabled": False,
}
@@ -66,7 +66,7 @@ class HitTestingService:
retrieval_method=retrieval_model.get("search_method", "semantic_search"),
dataset_id=dataset.id,
query=query,
top_k=retrieval_model.get("top_k", 2),
top_k=retrieval_model.get("top_k", 4),
score_threshold=retrieval_model.get("score_threshold", 0.0)
if retrieval_model["score_threshold_enabled"]
else 0.0,

View File

@@ -28,7 +28,7 @@ const ExternalKnowledgeBaseCreate: React.FC<ExternalKnowledgeBaseCreateProps> =
external_knowledge_api_id: '',
external_knowledge_id: '',
external_retrieval_model: {
top_k: 2,
top_k: 4,
score_threshold: 0.5,
score_threshold_enabled: false,
},

View File

@@ -49,7 +49,7 @@ const TextAreaWithButton = ({
const { t } = useTranslation()
const [isSettingsOpen, setIsSettingsOpen] = useState(false)
const [externalRetrievalSettings, setExternalRetrievalSettings] = useState({
top_k: 2,
top_k: 4,
score_threshold: 0.5,
score_threshold_enabled: false,
})

View File

@@ -233,7 +233,7 @@ const DebugConfigurationContext = createContext<IDebugConfiguration>({
reranking_provider_name: '',
reranking_model_name: '',
},
top_k: 2,
top_k: 4,
score_threshold_enabled: false,
score_threshold: 0.7,
datasets: {